首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion protein protects human neurons against Bax-mediated apoptosis   总被引:14,自引:0,他引:14  
The function of the cellular prion protein (PrP) is still poorly understood. We present here an unprecedented role for PrP against Bax-mediated neuronal apoptosis and show that PrP potently inhibits Bax-induced cell death in human primary neurons. Deletion of four octapeptide repeats of PrP (PrPDeltaOR) and familial D178N and T183A PrP mutations completely or partially eliminate the neuroprotective effect of PrP. PrP remains anti-apoptotic despite truncation of the glycosylphosphatidylinositol (GPI) anchor signal peptide, indicating that the neuroprotective form of PrP does not require the abundant cell surface GPI-anchored PrP. Our results implicate PrP as a potent and novel anti-apoptotic protein against Bax-mediated cell death.  相似文献   

2.
Bax inhibitor-1 (BI-1) is an evolutionarily conserved cell death suppresser in animals, yeast, and plants. In this study, yeast strains carrying single-gene deletions were screened for factors related to cell death suppression by Arabidopsis BI-1 (AtBI-1). Our screen identified mutants that failed to survive Bax-induced lethality even with AtBI-1 coexpression (Bax suppressor). The Deltacox16 strain was isolated as a BI-1-inactive mutant; it was disrupted in a component of the mitochondrial cytochrome c oxidase. Other mutants defective in mitochondrial electron transport showed a similar phenotype. ATP levels were markedly decreased in all these mutants, suggesting that BI-1 requires normal electron transport activity to suppress cell death in yeast.  相似文献   

3.
Induction of mammalian cell death by a plant Bax inhibitor   总被引:5,自引:0,他引:5  
Arabidopsis thaliana AtBI-1 is an orthologue of mammalian Bax inhibitor-1 capable of suppressing Bax-induced cell death in yeast as well as mammalian cells. Here we investigated whether or not AtBI-1 suppresses Bax-induced cell death using human fibrosarcoma HT1080 cells. Surprisingly, AtBI-1 did not block Bax-induced cell death, but it triggered apoptotic cell death in mammalian cells. The proapoptotic effect of AtBI-1 was blocked by the X-linked caspase inhibitor XIAP, suggesting that the cell death caused by AtBI-1 is similar to that caused by Bax.  相似文献   

4.
Although there is no consensus regarding the normal function of the prion protein, increasing evidence points towards a role in cellular protection against cell death. We have previously shown that prion protein is a potent inhibitor of Bax-induced apoptosis in human primary neurons and in the breast carcinoma MCF-7 cells. Here, we used the yeast Saccharomyces cerevisiae to investigate if the neuroprotective function of prion protein requires other members of the Bcl-2 family given that S. cerevisiae lacks Bcl-2 genes but undergoes a mitochondrial-dependent apoptotic cell death upon exogenous expression of Bax protein. We show that Bax induces cell death and growth inhibition in S. cerevisiae. Prion protein prevents Bax-mediated cell death. Prion protein overcomes Bax-mediated growth arrest in S phase but cannot overcome population growth inhibition because the cells then accumulate in G(2)/M phase. We conclude that prion protein does not require other Bcl-2 family proteins to protect against Bax-mediated cell death.  相似文献   

5.
Inherited prion diseases are linked to mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. It has been proposed that neuronal death can be triggered by accumulation of PrP in the cytosol because of impairment of proteasomal degradation of misfolded PrP molecules retrotranslocated from the endoplasmic reticulum (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). To test whether this neurotoxic mechanism is operative in inherited prion diseases, we evaluated the effect of proteasome inhibitors on the viability of transfected N2a cells and primary neurons expressing mouse PrP homologues of the D178N and nine octapeptide mutations. We found that the inhibitors caused accumulation of an unglycosylated, aggregated form of PrP exclusively in transfected N2a expressing PrP from the cytomegalovirus promoter. This form contained an uncleaved signal peptide, indicating that it represented polypeptide chains that had failed to translocate into the ER lumen during synthesis, rather than retrogradely translocated PrP. Quantification of N2a viability in the presence of proteasome inhibitors demonstrated that accumulation of this form was not toxic. No evidence of cytosolic PrP was found in cerebellar granule neurons from transgenic mice expressing wild-type or mutant PrPs from the endogenous promoter, nor were these neurons more susceptible to proteasome inhibitor toxicity than neurons from PrP knock-out mice. Our analysis fails to confirm the previous observation that mislocation of PrP in the cytosol is neurotoxic, and argues against the hypothesis that perturbation of PrP metabolism through the proteasomal pathway plays a pathogenic role in prion diseases.  相似文献   

6.
The cellular prion protein (PrP(C)) is critical for the development of prion diseases. However, the physiological role of PrP(C) is less clear, although a role in the cellular resistance to oxidative stress has been proposed. PrP(C) is cleaved at the end of the copper-binding octapeptide repeats through the action of reactive oxygen species (ROS), a process termed beta-cleavage. Here we show that ROS-mediated beta-cleavage of cell surface PrP(C) occurs within minutes and was inhibited by the hydroxyl radical quencher dimethyl sulfoxide and by an antibody against the octapeptide repeats. A construct of PrP lacking the octapeptide repeats, PrPDeltaoct, failed to undergo ROS-mediated beta-cleavage, as did two mutant forms of PrP, PG14 and A116V, associated with human prion diseases. As compared with cells expressing wild type PrP, when challenged with H2O2 and Cu2+, cells expressing PrPdeltaoct, PG14, or A116V had reduced viability and glutathione peroxidase activity and increased intracellular free radicals. Thus, lack of ROS-mediated beta-cleavage of PrP correlated with the sensitivity of the cells to oxidative stress. These data indicate that the beta-cleavage of PrP(C) is an early and critical event in the mechanism by which PrP protects cells against oxidative stress.  相似文献   

7.
Helix 3 is necessary and sufficient for prion protein's anti-Bax function   总被引:1,自引:0,他引:1  
To identify the structural elements of the prion protein (PrP) necessary for its protective function against Bcl-2 associated protein X (Bax), we performed structure–function analyses of the anti-Bax function of cytosolic PrP (CyPrP) in MCF-7 cells. Deletions of 1, 2, or 3 N-terminal Bcl-2 homology domain 2-like octapeptide repeats (BORs), but not deletion of all four BORs, abolish CyPrPs anti-Bax function. Deletion of α-helix 3 (PrP23–199) or further C-terminal deletions of α-helix 1 and 2, and β-strand 1 and 2 (PrP23–172, PrP23–160, PrP23–143, and PrP23–127) eliminates CyPrPs protection against Bax-mediated cell death. The substitution of helix 3 amino acid residues K204, V210, and E219 by proline inhibits the anti-Bax function of CyPrP. The substitution of K204, but not V210 and E219, by alanine residues also prevents CyPrPs anti-Bax function. Expression of PrPs helix 3 displays anti-Bax activity in MCF-7 cells and in human neurons. Together, these results indicate that although the BOR domain has an influence on PrPs anti-Bax function, the helix 3 is necessary and sufficient for the anti-Bax function of CyPrP. Identification of helix 3 as the structural element for the anti-Bax function thus provides a molecular target to modulate PrPs anti-Bax function in cancer and neurodegeneration.  相似文献   

8.
Recently, it was observed that reverse-translocated cytosolic PrP and PrP expressed in the cytosol induce rapid death in neurons (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781-1785). In this study, we investigated whether accumulation of prion protein (PrP) in the cytosol is toxic to human neurons in primary culture. We show that in these neurons, a single PrP isoform lacking signal peptide accumulates in the cytosol of neurons treated with epoxomicin, a specific proteasome inhibitor. Therefore, endogenously expressed PrP is subject to the endoplasmic reticulum-associated degradation (ERAD) pathway and is degraded by the proteasome in human primary neurons. In contrast to its toxicity in N2a cells, reverse-translocated PrP (ERAD-PrP) is not toxic even when neurons are microinjected with cDNA constructs to overexpress either wild-type PrP or mutant PrPD178N. We found that ERAD-PrP in human neurons remains detergent-soluble and proteinase K-sensitive, in contrast to its detergent-insoluble and proteinase K-resistant state in N2a cells. Furthermore, not only is microinjection of a cDNA construct expressing CyPrP not toxic, it protects these neurons against Bax-mediated cell death. We conclude that in human neurons, ERAD-PrP is not converted naturally into a form reminiscent of scrapie PrP and that PrP located in the cytosol retains its protective function against Bax. Thus, it is unlikely that simple accumulation of PrP in the cytosol can cause neurodegeneration in prion diseases.  相似文献   

9.
10.
The cellular prion protein (PrP(C)) is thought to be involved in protection against cell death, however the exact cellular mechanisms involved are still controversial. Herein we present data that strongly indicate a functional link between PrP(C) expression and phosphatidylinositol 3-kinase (PI 3-kinase) activation, a protein kinase that plays a pivotal role in cell survival. Both mouse neuroblastoma N2a cells and immortalized murine hippocampal neuronal cell lines expressing wild-type PrP(C) had significantly higher PI 3-kinase activity levels than their respective controls. Moreover, PI 3-kinase activity was found to be elevated in brain lysates from wild-type mice, as compared to prion protein-knockout mice. Recruitment of PI 3-kinase by PrP(C) was shown to contribute to cellular survival toward oxidative stress by using 3-morpholinosydnonimine (SIN-1) and serum deprivation. Moreover, both PI 3-kinase activation and cytoprotection by PrP(C) appeared to rely on copper binding to the N-terminal octapeptide of PrP(C). Thus, we propose a model in which the interaction of copper(II) with the N-terminal domain of PrP(C) enables transduction of a signal to PI 3-kinase; the latter, in turn, mediates downstream regulation of cell survival.  相似文献   

11.
Mastrangelo P  Westaway D 《Gene》2001,275(1):1-18
The prion protein gene, Prnp, encodes PrP(Sc), the major structural component of prions, infectious pathogens causing a number of disorders including scrapie and bovine spongiform encephalopathy (or BSE). Missense mutations in the human Prnp gene cause inherited prion diseases such as familial Creutzfeldt-Jakob disease. In uninfected animals Prnp encodes a glycophosphatidylinositol (GPI)-anchored protein denoted PrP(C) and in prion infections PrP(C) is converted to PrP(Sc) by templated refolding. Though Prnp is conserved in mammalian species, attempts to verify interactions of putative PrP binding proteins by genetic means have proven frustrating and the ZrchI and Npu lines of Prnp gene-ablated mice (Prnp(0/0) mice) lacking PrP(C) remain healthy throughout development. This indicates that PrP(C) serves a function that is not apparent in a laboratory setting or that other molecules have overlapping functions. Current possibilities involve shuttling or sequestration of synaptic Cu(II) via binding to N-terminal octapeptide residues and/or signal transduction involving the fyn kinase. A new point of entry into the issue of prion protein function has emerged from identification of a paralogue, Prnd, with 24% coding sequence identity to Prnp. Prnd lies downstream of Prnp and encodes the doppel (Dpl) protein. Like PrP(C), Dpl is presented on the cell surface via a GPI anchor and has three alpha-helices: however, it lacks the conformationally plastic and octapeptide repeat domains present in its well-known relative. Interestingly, Dpl is overexpressed in the Ngsk and Rcm0 lines of Prnp(0/0) mice via intergenic splicing events. These lines of Prnp(0/0) mice exhibit ataxia and apoptosis of cerebellar cells, indicating that ectopic synthesis of Dpl protein is toxic to central nervous system neurons: this inference has now been confirmed by the construction of transgenic mice expressing Dpl under the direct control of the PrP promoter. Remarkably, Dpl-programmed ataxia is rescued by wild-type Prnp transgenes. The interaction between the Prnp and Prnd genes in mouse cerebellar neurons may have a physical correlate in competition between Dpl and PrP(C) within a common biochemical pathway that when mis-regulated leads to apoptosis.  相似文献   

12.
Prion diseases are fatal neurodegenerative disorders that result from conversion of a normal, cell surface glycoprotein (PrP(C)) into a conformationally altered isoform (PrP(Sc)) that is thought to be infectious. Although a great deal is known about the role of PrP(Sc) in the disease process, the physiological function of PrP(C) has remained enigmatic. In this report, we have used the yeast Saccharomyces cerevisiae to test one hypothesized function of PrP(C), as a receptor for the uptake or efflux of copper ions. We first modified the PrP signal peptide by replacing its hydrophobic core with the signal sequence from the yeast protein dipeptidyl aminopeptidase B, so that the resulting protein was targeted cotranslationally to the secretory pathway when synthesized in yeast. PrP molecules with the modified signal peptide were efficiently glycosylated, glycolipid-anchored, and localized to the plasma membrane. We then tested whether PrP expression altered the growth deficiency phenotypes of yeast strains harboring deletions in genes that encode key components of copper utilization pathways, including transporters, chaperones, pumps, reductases, and cuproenzymes. We found that PrP did not rescue any of these mutant phenotypes, arguing against a direct role for the protein in copper utilization. Our results provide further clarification of the physiological function of PrP(C), and lay the groundwork for using PrP-expressing yeast to study other aspects of prion biology.  相似文献   

13.
This minireview deals with some approaches and results of experiments which enabled to discover SOD-like activity of the mammal PrP protein. This activity required the unchanged region of the repeated octapeptide and Cu2+ binding to the appropriate sites of the PrP molecule. It was shown that an infectious prion isoform could bind the normal isoform. This leads to the loss of PrP SOD-like function accompanied by Cu2+ release from the molecule. Also, the problem of sowing the protein seeds of prion propagation is briefly summarized and the first evidence of abnormal protein conformation induced in vivo using yeast cell and in vitro formed Sup 35 prion seed is described.  相似文献   

14.
《朊病毒》2013,7(2):45-47
The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation, and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability.  相似文献   

15.
A conformational change of the cellular prion protein (PrP(c)) underlies formation of PrP(Sc), which is closely associated with pathogenesis and transmission of prion diseases. The precise conformational prerequisites and the cellular environment necessary for this post-translational process remain to be completely elucidated. At steady state, glycosylated PrP(c) is found primarily at the cell surface, whereas a minor fraction of the population is disposed of by the ER-associated degradation-proteasome pathway. However, chronic ER stress conditions and proteasomal dysfunctions lead to accumulation of aggregation-prone PrP molecules in the cytosol and to neurodegeneration. In this study, we challenged different cell lines by inducing ER stress or inhibiting proteasomal activity and analyzed the subsequent repercussion on PrP metabolism, focusing on PrP in the secretory pathway. Both events led to enhanced detection of PrP aggregates and a significant increase of PrP(Sc) in persistently prion-infected cells, which could be reversed by overexpression of proteins of the cellular quality control. Remarkably, upon proteasomal impairment, an increased fraction of misfolded, fully glycosylated PrP molecules traveled through the secretory pathway and reached the plasma membrane. These findings suggest a novel pathway that possibly provides additional substrate and template necessary for prion formation when protein clearance by the proteasome is impaired.  相似文献   

16.
Baek D  Jin Y  Jeong JC  Lee HJ  Moon H  Lee J  Shin D  Kang CH  Kim DH  Nam J  Lee SY  Yun DJ 《Phytochemistry》2008,69(2):333-338
  相似文献   

17.
In a search for the physiological conditions able to suppress the disruption of electron transport through the inner mitochondrial membrane induced by Bax, we found that respiratory substrate - lactate completely abolished Bax toxicity in yeast Kluyveromyces lactis. The effect of lactate was dependent on the presence of cytochrome c, as no effect was observed in the cytochrome c null strain. The investigation of lactate effect on markers of Bax toxicity showed that: (i) oxidation of lactate did not affect the decrease in oxygen consumption, but (ii) lactate was able to diminish the generation of reactive oxygen species and simultaneously to suppress Bax-induced cell death. We show that suppression of Bax lethality in K. lactis can be, in addition to anti-apoptotic proteins, achieved also by the utilization of lactate in the mitochondria.  相似文献   

18.
Expression of the pro-apoptotic protein Bax in yeast Saccharomyces cerevisiae induces a release of cytochrome c accompanied by a decrease of the amount of cytochrome c oxidase. Here we show that the decrease of cytochrome c oxidase is due to the activation of mitochondrial protease Yme1p, of which cytochrome c oxidase subunit 2 (Cox2p) is a substrate. The absence of Yme1p slightly delays Bax-induced cell death, suggesting a role of this protease in yeast cell death and thus of its mammalian homologue in apoptosis.  相似文献   

19.
Bax-induced cell death in yeast depends on mitochondrial lipid oxidation.   总被引:7,自引:0,他引:7  
The oxidant function of pro-apoptotic protein Bax was investigated through heterologous expression in yeast. Direct measurements of fatty acid content show that Bax-expression induces oxidation of mitochondrial lipids. This effect is prevented by the coexpression of Bcl-xL. The oxidation actually could be followed on isolated mitochondria as respiration-induced peroxidation of polyunsaturated cis-parinaric acid and on whole cells as the increase in the amount of thiobarbituric acid-reactive products. Treatments that increase the unsaturation ratio of lipids, making them more sensitive to oxidation, increase kinetics of Bax-induced death. Conversely, inhibitors of lipid oxidation and treatments that decrease the unsaturation ratio of fatty acids decrease kinetics of Bax-induced death. Taken together, these results show that Bax-induced mitochondrial lipid oxidation is relevant to Bax-induced cell death. Conversely, lipid oxidation is poorly related to the massive Bax-induced superoxide and hydrogen peroxide accumulation, which occurs at the same time, as chemical or enzymatic scavenging of ROS does not prevent lipid oxidation nor has any effects on kinetics of Bax-induced cell death. Whatever the origin of mitochondrial lipid oxidation, these data show that it represents a major step in the cascade of events leading to Bax-induced cell death. These results are discussed in the light of the role of lipid oxidation both in mammalian apoptosis and in other forms of cell death in other organisms.  相似文献   

20.
Previous studies have reported a neuroprotective role for cellular prion protein (PrP(C)) against apoptosis induced by serum deprivation in an immortalized prion protein gene (Prnp)-deficient neuronal cell line, but the mechanisms remain unclear. In this study, to investigate the mechanisms by which PrP(C) prevents apoptosis, the authors compared apoptosis of Prnp(-/-) cells with that of Prnp(-/-) cells expressing the wild-type PrP(C) or PrP(C) lacking N-terminal octapeptide repeat region under serum-free conditions. Re-introduction of Prnp rescued cells from apoptosis, upregulated superoxide dismutase (SOD) activity, enhanced superoxide anion elimination, and inhibited caspase-3/9 activation. On the other hand, N-terminally truncated PrP(C) enhanced apoptosis accompanied by potentiation of superoxide production and caspase-3/9 activation due to inhibition of SOD. These results suggest that PrP(C) protects Prnp(-/-) cells from apoptosis via superoxide- and caspase-3/9-dependent pathways by upregulating SOD activity. Furthermore, the octapeptide repeat region of PrP(C) plays an essential role in regulating apoptosis and SOD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号