首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuropathy target esterase (NTE) is the proposed target site for the mechanism of initiation of the so-called organophosphorus-induced delayed polyneuropathy (OPIDP). NTE is operationally defined in this article as the phenylvalerate esterase activity which is resistant to inhibition by 40 μM paraoxon and sensitive to 250 μM mipafox. Soluble (S-NTE) and particulate (P-NTE) forms of NTE had first been identified in hen sciatic nerve [E. Vilanova, J. Barril, V. Carrera, and M. C. Pellín (1990). J. Neurochem., 55, 1258–1265]. P-NTE and S-NTE showed different sensitivities to the inhibition by several organophosphorus compounds over a range of inhibitor concentrations for a 30 or 120 minute fixed inhibition time at 37°C. S-NTE was less sensitive to the inhibition by O,O′-diisopropyl phosphorofluoridate (DFP), hexyl 2,5-dichlorophenyl phosphoramidate (H-DCP), and mipafox than P-NTE and brain NTE, while the opposite was true for O,S-dimethyl phosphoroamidothioate (methamidophos). For each of the four inhibitors assayed, S-NTE showed two components of different sensitivity according to the inhibition curves fitted with exponential models. However, the inhibition of P-NTE by mipafox, DFP, and HDCP did not show the presence of a considerable proportion of a second component. The kinetics of heat inactivation showed that P-NTE inactivated faster and to a greater extent than S-NTE. It is concluded that (1) sciatic nerve S-NTE is more different from brain NTE than P-NTE; (2) P-NTE and S-NTE have different sensitivities to the inhibition by the studied organophosphorous compounds; (3) the inhibition curves suggest that S-NTE has two different enzymatic components while these are not so evident for P-NTE. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Histochemical demonstration of neurotoxic esterase   总被引:1,自引:0,他引:1  
We developed a histochemical method for localizing neurotoxic esterase (NTE), defined as the phenylvalerate (PV)-hydrolyzing esterase that is resistant to 40 microM paraoxon (A) but inactivated by paraoxon plus 50 microM mipafox (B). NTE is considered to be the target enzyme in the production of organophosphorus ester-induced delayed neurotoxicity (OPIDN). Cryostat sections were incubated in a medium containing alpha-naphthyl valerate and 6-benzamido-4-methoxy-m-toluidine diazonium chloride (fast violet B) after treatment with the above-mentioned inhibitors, leading to formation of an aqueous insoluble precipitate at sites of enzymatic activity. NTE activity was estimated as staining detectable in A but not in B. In the central nervous system (CNS) of chicken, NTE appeared to be present primarily in the somata of most neurons, but at sites indistinguishable from those of the other inhibitor-resistant and -sensitive alpha-naphthyl valerate-hydrolyzing esterases. It could not be distinguished in the CNS of cat, probably because it constitutes less than 3% of the total PV-hydrolyzing activity in the CNS of that species.  相似文献   

3.
Abstract: Neuropathy target esterase (NTE) activity is operatively defined in this work as the phenyl valerate esterase (PVase) activity resistant to 40 µ M paraoxon but sensitive to 250 µ M mipafox. Gel filtration chromatography with Sephacryl S-300 of the soluble fraction from spinal cord showed two PVase peaks containing NTE activity (S-NTE1 and S-NTE2). The titration curve corresponding to inhibition by mipafox was studied over the 1–250 µ M range, in the presence of 40 µ M paraoxon. The data revealed that S-NTE1 and S-NTE2 have different sensitivities to mipafox with I50 (30 min) values of 1.7 and 19 µ M , respectively. This was similar to the pattern observed in the soluble fraction from sciatic nerve with two components ( V o peak, or S-NTE1; and 100-K peak, or S-NTE2) with different sensitivity to mipafox. However, in the brain soluble fraction, only the high-molecular-mass (>700-kDa) peak or S-NTE1 was obtained. It showed an I50 of 5.2 µ M in the mipafox inhibition curve. The chromatographic profile was different on changing the pH in the subcellular fractionation. When the homogenized tissue was centrifuged at pH 6.8, the V o peak activity decreased in the soluble fraction from these nerve tissues. This suggests that the V o peak could be related to materials partly solubilized from membranes at higher pH. The chromatographic pattern and mipafox sensitivity suggest that the different tissues have a different NTE isoform composition. S-NTE2 should be a different entity than S-NTE1 and particulate NTE. The potential role of soluble forms in the mechanism of initiation or promotion of neuropathy due to organophosphorus remain unknown.  相似文献   

4.
The mechanism by which organo-phosphorus-induced delayed polyneuropathy is induced relates to the specific inhibition and subsequent modification (“aging”) of a protein known as neuropathy target esterase (NTE), operatively defined as paraoxon-resistant and mipafox-sensi-tive phenyl valerate (PV) esterase activity. This protein has fundamentally been investigated in hen brain, the latter being the habitually employed OPIDP study model. In the present article, a partial characterization is made of the NTE and other related PV esterases in the bovine adrenal medulla and brain; NTE sensitivity to the neurotoxic or-ganophosphorus compound mipafox is investigated, and its subcellular distribution is studied. The NTE activity of the adrenal medulla was found to be the highest of those among the tissues studied to date (5000 ± 1400 mU/g tissue; ± SD, n = 12). This activity represented 93% of the PV esterase activity resistant to 40 μm paraoxon in the par-ticulate fraction of the adrenal medulla and approximately 50% of total PV esterase activity. In the bovine brain, these proportions were 72 and 26%, respectively, i.e., similar to those described in hen brain. The mipafox inhibition curve of PV esterase activity resistant to 40μM paraoxon in the particulate fraction of the adrenal medulla suggests that NTE activity fundamentally comprises a mipafox-sensitive component with an I 50 of 6.39 μM at 30 minutes, which is similar to the value reported in hen brain. NTE activity in the bovine adrenal medulla is almost exclusively limited to the particulate fraction, the microsomal fraction, plasma membrane, and chromaffin granule-enriched fractions being the highest in terms of specific activity. On the contrary, the mitochondria-enriched fraction was very poor in such activity. In bovine brain, most NTE activity was likewise limited to the particulate fraction.  相似文献   

5.
Treatment of drug-resistant human KB carcinoma cells (KB-V1) with 0.2 microM phorbol 12-myristate 13-acetate (PMA) resulted in increases of 4-fold in both membrane-associated protein kinase C activity and phosphorylation of P-glycoprotein. The response was essentially complete after 30 min and was relatively stable, since both of these parameters remained elevated above basal levels in cells exposed to PMA for 24 hours. In contrast, long-term PMA treatment of drug-sensitive KB-3 cells caused complete depletion of protein kinase C. The rate of accumulation of [3H]vinblastine in KB-V1 cells was 0.8 +/- 0.1 pmol/mg/30 min in the absence, and 1.9 +/- 0.2 pmol/mg/30 min in the presence, of 20 microM verapamil. Preincubation of cells with PMA resulted in a time-dependent decrease, up to 60% after 24 hours, in both of these values. These results suggest that protein kinase C mediated phosphorylation stimulates the drug transport activity of P-glycoprotein.  相似文献   

6.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a mammary gland carcinogen present in the human diet in cooked meat. To examine if PhIP and its reactive metabolite N-hydroxy-PhIP inhibit apoptosis in human mammary epithelial MCF-10A cells, confluent cultures deprived of serum and growth factors were incubated for 24 h with either compound. The percentages of dead cells (mean +/- SEM, n = 3) as measured by trypan blue exclusion were 5.7 +/- 0.6, 3.4 +/- 0.3, 2.7 +/- 0.3, and 0.2 +/- 0.003%, in control, 1 microM N-hydroxy-PhIP-, 5 microM N-hydroxy-PhIP-, and 100 microM PhIP-treated dishes, respectively. The expression of Bcl-2 and Bcl-x(L) as quantitated by Western blotting was 1.2- to 1.9-fold higher in the treated groups. PhIP-DNA adducts induced by N-hydroxy-PhIP in MCF-10A cells measured by the (32)P-postlabeling assay were low (<1 x 10(7), relative adduct labeling). No adducts were detected after incubation with PhIP. Western blot analysis indicated that PhIP increased ERK2 phosphorylation concomitant with Bcl-2. The results suggest that the inhibition of cell death in mammary epithelial cells by PhIP occurs independently of PhIP-DNA adducts and may involve enhanced signaling through the MAP kinase pathways.  相似文献   

7.
The mechanisms of cadmium (Cd)-dependent nephrotoxicity were studied in a rat proximal tubule (PT) cell line. CdCl(2) (5 microM) increased the production of reactive oxygen species (ROS), as determined by oxidation of dihydrorhodamine 123 to fluorescent rhodamine 123. The levels of ubiquitin-conjugated cellular proteins were increased by Cd in a time-dependent fashion (maximum at 24-48 h). This was prevented by coincubation with the thiol antioxidant N-acetylcysteine (NAC, 15 mM). Cd also increased apoptosis (controls: 2.4+/-1.6%; Cd: 8.1+/-1.9%), but not necrosis (controls: 0.5 +/- 0.3%; Cd: 1.4+/- 2.5%). Exposure of PT cells with Cd decreased protein levels of the catalytic subunit (alpha1) of Na+/K(+)-ATPase, a long-lived membrane protein (t(1/2)>48 h) that drives reabsorption of ions and nutrients through Na(+)-dependent transporters in PT. Incubation of PT cells for 48 h with Cd decreased Na+/K(+)-ATPase alpha1-subunit, as determined by immunoblotting, by approximately 50%, and NAC largely prevented this effect. Inhibitors of the proteasome such as MG-132 (20 microM) or lactacystin (10 microM), as well as lysosomotropic weak bases such as chloroquine (0.2 mM) or NH(4)Cl (30 mM), significantly reduced the decrease of Na(+)/K(+)-ATPase alpha1-subunit induced by Cd, and in combination abolished the effect of Cd on Na+/K(+)-ATPase. Immunofluorescence labeling of Na+/K(+)-ATPase showed a reduced expression of the protein in the plasma membrane of Cd-exposed cells. After addition of lactacystin and chloroquine to Cd-exposed PT cells, immunoreactive material accumulated into intracellular vesicles. The data indicate that micromolar concentrations of Cd can increase ROS production and exert a toxic effect on PT cells. Oxidative damage increases the degradation of Na+/K(+)-ATPase through both the proteasomal and endo-/lysosomal proteolytic pathways. Degradation of oxidatively damaged Na+/K(+)-ATPase may contribute to the 'Fanconi syndrome'-like Na(+)-dependent transport defects associated with Cd-nephrotoxicity.  相似文献   

8.
Kropp TJ  Glynn P  Richardson RJ 《Biochemistry》2004,43(12):3716-3722
Aging of organophosphorus (OP)-compound-inhibited neuropathy target esterase (NTE) is the critical event that initiates OP-compound-induced delayed neurotoxicity (OPIDN). Aging has classically been considered to involve side-group loss from phosphylated NTE, rendering the enzyme refractory to reactivation. N,N'-Diisopropylphosphorodiamidofluoridate (mipafox, MIP)-inhibited NTE has been thought to age quickly; however, it can be reactivated under acidic conditions. The present study was undertaken to determine whether MIP-inhibited human recombinant NTE esterase domain (NEST) ages classically by isopropylamine loss. Diisopropylphosphorofluoridate (DFP), the oxygen analogue of MIP, was used for comparison. Kinetic values for DFP against NEST were as follows: k(i) = 17 200 +/- 180 M(-1) min(-1); reactivation t(1/2) approximately 90 min at pH 8.0 and approximately 60 min at pH 5.2; k(4) = 0.108 +/- 0.041 min(-1) at pH 8.0 and 0.181 +/- 0.034 min(-1) at pH 5.2. Kinetic values for MIP against NEST were as follows: k(i) = 1880 +/- 61 M(-1) min(-1); reactivation t(1/2) = 0 min at pH 8.0 and approximately 60 min at pH 5.2; aging was complete at all time points tested at pH 8.0, but no aging occurred at pH 5.2. Mass spectrometry revealed a mass shift of 123.0 +/- 0.6 Da for the active site peptide peak of aged DFP-inhibited NEST, corresponding to a monoisopropyl phosphate adduct. In contrast, the analogous mass shift for aged MIP-inhibited NEST was 162.8 +/- 0.6 Da, corresponding to the intact N,N'-diisopropylphosphorodiamido adduct. Thus, MIP-inhibited NEST does not age by isopropylamine loss. However, because kinetically aged MIP-inhibited NEST yields an intact adduct capable of reversible deprotonation, aging could occur by proton loss. Indeed, MIP-inhibited NEST does not age at pH 5.2 but ages immediately and completely at pH 8.0. Therefore, we conclude that the MIP-NEST conjugate ages by deprotonation rather than classical side-group loss.  相似文献   

9.
Manganese can be toxic to the heart, causing dysfunction following long exposure. In our experiments, we examined the cytotoxicity of manganese in neonatal rat ventricular myocytes (NRVM) by MTT assays in vitro. Results showed that after incubation in the different concentrations of manganese for 24 h, apparent cytotoxicity was observed. At 500, 1000, and 1500 2 microM of manganese, the percentage of cell viability dropped to 82% +/- 6.13, 78% +/- 5.28, and 66% +/- 4.22, respectively. When cells were treated for 48 h, all concentrations tested exerted toxic effect; especially from 500 to 1500 microM the cell viability dropped from 67% +/- 4.84 to 37% +/- 3.25. Apoptosis in NRVM was then examined by flow cytometry. Results showed that the percentage of apoptotic cells treated with 500 microM of manganese for 24 h increased from 4% +/- 0.84 to 7% +/- 1.16. After 48 h of incubation, this percentage increased to 11% +/- 0.91. There was no significant difference between control groups (0 microM manganese) after 24 and 48 h incubation. The morphological changes of NRVM nuclei were visualized with the fluorescent DNA-binding dye Hoechst33342 after incubation in 500 microM of manganese for 48 h. Compared with normal nuclei, apoptotic nuclei showed the typical features of fragmentation and condensation. To investigate whether there are any apoptotic gene expression changes during apoptosis, we examined the expression level of Bcl-2, Bax, and P53 mRNAs after treatment with 500 microM of manganese for 48 h. The Bcl-2 mRNA expression decreased while the expression of Bax as well as P53 mRNAs increased. These results suggested that manganese cytotoxicity on NRVM could induce apoptosis in NRVM cells. The apoptosis process might involve, and be promoted by, the changes of the expression levels of P53, Bcl-2, and Bax proteins.  相似文献   

10.
Bioelectrochemical analysis of neuropathy target esterase (NTE) and its inhibitors is based on the combination of the NTE-catalyzed hydrolysis of phenyl valerate and phenol detection by a tyrosinase carbon-paste electrode. The use of the tyrosinase electrode improves 10-fold the sensitivity of NTE detection in comparison with a spectrophotometric method. The tyrosinase electrode was found to be suitable for measurements in whole human blood where spectrophotometric detection is considerably restricted. The specificity of NTE in blood for mipafox and di-2-propyl phosphorofluoridate was close to that for neuronal NTE. The NTE-like activity in blood was determined to be 0.19 +/- 0.02 nmol/min/mg of protein.  相似文献   

11.
12.
Triazine (atrazine) and carbamates (maneb, metiram, and ziram) are used as pesticides on a variety of crops around the world. To our knowledge, there have been no studies dealing with the effects of these compounds on human natural killer (NK) cells cytotoxic function. NK cells play a central role in immune defense against tumor development and viral infections. Thus, any agent that interferes with the ability of NK cells to lyse their targets could increase the risk of tumor incidence and/or viral infections. In this study, we examined the effects of atrazine, maneb, metiram, zineb, and ziram on the ability of human NK cells to lyse tumor cells. The compounds were tested in both purified NK cells as well as a cell preparation that contained both T and NK lymphocytes (T/NK cells). Lymphocytes were exposed to the compounds for periods of time ranging from 1 h to 6 days. Exposure of highly purified NK cells to 10 microM atrazine, maneb, or metiram inhibited K562 tumor cell lysis by 63+/-25, 95+/-4, and 50+/-6%, respectively, after a 24 h exposure and by 83+/-21, 70+/-39, and 48+/-41% after a 6-day exposure. Exposure to 2.5 microM ziram for 24 h caused a 99+/-2% decrease in lytic function and at 1 microM for 6 days caused a 96+/-4% decrease. However, when T/NK cells were exposed to atrazine, maneb, or metiram for 24 h only 10 microM atrazine and maneb caused a significant decreases in lytic function (61+/-13 and 38+/-18%) and after 6 days only atrazine was inhibitory (54+/-12%). A 24-h exposure to 2.5-microM ziram caused a 41+/-51% decrease in function, but a 6-day exposure to 1 microM ziram caused no inhibition of lytic function. The results provide evidence of relative toxic potential for the five compounds and the immunomodulatory effects on both T and NK lymphocyte function.  相似文献   

13.
We describe an analytical method that allows the determination of organophosphorus pesticides (OPs) in different human tissues. It involves an extraction procedure with ethanol-ethyl acetate, followed by gel permeation chromatography clean-up step and analysis by capillary gas chromatography-negative chemical ionization mass spectrometry in the selected ion monitoring mode. The method was tested for 37 OPs and the recoveries obtained vary between 60 and 106% with standard deviations ranging between +/-2 and +/-10. These values are independent of the analyzed tissue. Peak area repeatability as RSD for some OPs was < or =4.8% while a good linear relationship in the range 1.0-500 pg microl(-1) with r(2)> or =0.9878 was obtained. The limit of detection for the 37 OPs falls between 0.01 and 0.09 ng g(-1) with an RSD< or =9.5%. The analytical set up in this paper has been used to analyze different samples of human tissues (liver, healthy kidney, cancer kidney and adipose tissue) of 24 patients. The number of the identified OPs in the tissue samples is different (max. 20) according to the sample while their concentration ranges between the limit of detection and 28.0 ng g(-1). The highest concentrations have been determined in liver samples without any pathology (0.4-28.0 ng g(-1)) while the lowest concentrations have been determined in healthy kidney samples (0.01-1.50 ng g(-1)). In the cancer kidney samples OP concentrations vary between 0.03 and 4.6 ng g(-1): these concentrations are more elevated than those determined in healthy kidney samples. The comparison between the concentration of OPs determined in the healthy part, when possible, and those determined in the cancer part of the same kidney sample are very interesting: in fact, in the latter the OP concentration is generally 1-2-times higher than that in the former, an index of lower enzymatic activity in the cancer tissue.  相似文献   

14.
15.
Reactive oxygen species may contribute to apoptosis in lymphoid tissues observed after exercise. Thymic and splenic tissues excised from control mice (C) or mice immediately after (t0) or 24 h after (t24) a run to exhaustion (RTE) were assayed for biochemical indexes of oxidative stress [thymic and splenic membrane lipid peroxides, superoxide dismutase, catalase, plasma uric acid (UA), and ascorbic acid (AA)]. There were significant increases in membrane lipid peroxides in thymus (P < 0.001) and spleen (P < 0.001) in acutely exercised mice relative to controls (thymus: C = 2.74 +/- 0.80 microM; t0 = 7.45 +/- 0.48 microM; t24 = 9.44 +/-1.41 microM; spleen: C = 0.48 +/- 0.22 microM; t0 = 1.78 +/- 0.28 microM; t24 = 2. 81 +/- 0.34 microM). The thymic and splenic tissue antioxidant enzymes concentrations of superoxide dismutase and catalase were significantly lower in samples collected at t0 relative to C and t24 mice (P < 0.001). Plasma UA and AA levels were used to assess the impact of the RTE on the peripheral antioxidant pool. There was no significant change in UA levels and a significant reduction in plasma AA concentrations (P < 0.001); the reduction in plasma AA occurred at t24 (6.53 +/- 1.64 microM) relative to t0 (13.11 +/- 0. 71 microM) and C (13.26 +/- 1.2 microM). These results suggest that oxidative damage occurs in lymphoid tissues after RTE exercise and that such damage may contribute to lymphocyte damage observed after acute exercise.  相似文献   

16.
Damage to the airway epithelium is common in asthma. Corticosteroids induce apoptosis in and suppress proliferation of airway epithelial cells in culture. Whether apoptosis contributes to impaired epithelial cell repair after injury is not known. We examined whether corticosteroids would impair epithelial cell migration in an in vitro model of wound closure. Wounds (approximately 0.5-1.3 mm2) were created in cultured 1HAEo- human airway epithelial cell monolayers, after which cells were treated with up to 10 microM dexamethasone or budesonide for 24 h. Cultured cells were pretreated for 24 or 48 h with dexamethasone to observe the effect of long-term exposure on wound closure. After 12 h, the remaining wound area in monolayers pretreated for 48 h with 10 microM dexamethasone was 43+/-18% vs. 10+/-8% for untreated control monolayers. The addition of either corticosteroid immediately after injury did not slow closure significantly. After 12 h the remaining wound area in monolayers treated with 10 microM budesonide was 39+/-4% vs. 43+/-3% for untreated control monolayers. The proportion of apoptotic epithelial cells as measured by terminal deoxynucleotidyltransferase-mediated dUTP biotin nick end labeling both at and away from the wound edge was higher in monolayers treated with budesonide compared with controls. However, wound closure in the apoptosis-resistant 1HAEo-.Bcl-2+ cell line was not different after dexamethasone treatment. We demonstrate that corticosteroid treatment before mechanical wounding impairs airway epithelial cell migration. The addition of corticosteroids after injury does not slow migration, despite their ability to induce apoptosis in these cells.  相似文献   

17.
The activities of acid and alkaline phosphatases and phosphotyrosine, phosphoserine and phosphothreonine phosphatases were measured in Friend murine erythroleukaemic (MEL) cells. The effects of treating the cells with dimethyl sulphoxide (DMSO), an inducer of differentiation, were examined. In untreated cells alkaline phosphatase activity was undetectable, though there were significant amounts of acid phosphatase (76 +/- 15 mU/mg protein) and phosphotyrosine phosphatase (16 +/- 0.9mU/mg protein); phosphoserine and phosphothreonine phosphatase activities (9 +/- 0.4 and 7 +/- 0.6mU/mg protein, respectively) were lower than for phosphotyrosine phosphatase. Addition of 1 or 2% DMSO to the culture medium resulted in the expected cell death within 2 weeks. With 0.5% DMSO, cells remained viable for at least 8 weeks, but while some appeared to have smaller nuclei and retained their rounded appearance, others became fibroblastic within several days and adhered to the culture vessel. The treated cells which had kept their morphology showed no difference in acid phosphatase activities as compared with untreated controls; phosphotyrosine phosphatase was lower (9 +/- 0.8mU/mg protein) and phosphoserine and phosphothreonine phophatases higher (11 +/- 0.5 and 10 +/- 0.4mU/mg protein, respectively) than in the controls. The Km values for p-nitrophenyl phosphate were similar in untreated and treated cells (0.069 and 0.068mM, respectively); for phosphotyrosine the Km value was lower in the treated cells (0.97mM) than in the controls (1.9mM).  相似文献   

18.
Although keratinocyte growth factor (KGF) protects against experimental acute lung injury, the mechanisms for the protective effect are incompletely understood. Therefore, the time-dependent effects of KGF on alveolar epithelial fluid transport were studied in rats 48-240 h after intratracheal administration of KGF (5 mg/kg). There was a marked proliferative response to KGF, measured both by in vivo bromodeoxyuridine staining and by staining with an antibody to a type II cell antigen. In controls, alveolar liquid clearance (ALC) was 23 +/- 3%/h. After KGF pretreatment, ALC was significantly increased to 30 +/- 2%/h at 48 h, to 39 +/- 2%/h at 72 h, and to 36 +/- 3%/h at 120 h compared with controls (P < 0.05). By 240 h, ALC had returned to near-control levels (26 +/- 2%/h). The increase in ALC was explained primarily by the proliferation of alveolar type II cells, since there was a good correlation between the number of alveolar type II cells and the increase in ALC (r = 0.92, P = 0.02). The fraction of ALC inhibited by amiloride was similar in control rats (33%) as in 72-h KGF-pretreated rats (38%), indicating that there was probably no major change in the apical pathways for Na uptake in the KGF-pretreated rats at this time point. However, more rapid ALC at 120 h, compared with 48 h after KGF treatment, may be explained by greater maturation of alpha-epithelial Na channel, since its expression was greater at 120 than at 48 h, whereas the number of type II cells was the same at these two time points. beta-Adrenergic stimulation with terbutaline 72 h after KGF pretreatment further increased ALC to 50 +/- 7%/h (P < 0.5). In summary, KGF induced a sustained increase over 120 h in the fluid transport capacity of the alveolar epithelium. This impressive upregulation in fluid transport was further enhanced with beta-adrenergic agonist therapy, thus providing evidence that two different treatments can simultaneously increase the fluid transport capacity of the alveolar epithelium.  相似文献   

19.
Phenyl di-n-pentylphosphinate is a reasonably stable easily synthesized inhibitor of neuropathy target esterase (NTE) with low anticholinesterase activity. Like phenylmethylsulphonyl fluoride it protects hens against neuropathic effects of compounds such as diisopropylphosphorofluoridate. At intervals up to 15 days after dosing hens (10 mg/kg s.c. to inhibit 90% NTE) assays were made of catalytically active and of phosphinylated NTE in autopsy tissue. The sum of these components was always within the range of catalytic activity in undosed controls. However, the half-life of reappearance of active NTE was 2.07 days +/- 0.13 (SD, n = 6) for brain and 3.62 days +/- 0.23 (SD, n = 6) for spinal cord--shorter than after dosing with phenylmethylsulphonyl fluoride. It is proposed that: (1) The physiological turnover mechanism cannot distinguish between catalytically active and di-n-pentylphosphinylated NTE although initiation of organophosphate-induced delayed polyneuropathy might involve recognition of aged di-alkyl-phosphorylated NTE as "foreign". (2) The short half-lives indicate a slow spontaneous dephosphinylation of inhibited NTE occurs in vivo as well as de novo synthesis. The difference in half-lives for brain and spinal cord NTE may be due to different rates of synthesis de novo or (more likely) to different rates of spontaneous reactivation of the inhibited NTE in the two tissues.  相似文献   

20.
Treatment with sulfonamide antibiotics in HIV-infected patients is associated with a high incidence (> 40%) of adverse drug events, including severe hypersensitivity reactions. Sulfonamide reactive metabolites have been implicated in the pathogenesis of these adverse reactions. Sulfamethoxazole hydroxylamine (SMX-HA) induces lymphocyte toxicity and suppression of proliferation in vitro; the mechanism(s) of these immunomodulatory effects remain unknown. We investigated the cytotoxicity of SMX-HA via apoptosis on human peripheral blood mononuclear cells and purified cell subpopulations in vitro. CD19(+), CD4(+), and CD8(+) cells were isolated from human peripheral blood by positive selection of cell surface molecules by magnetic bead separation. SMX-HA induced significant CD8(+) cell death (67 +/- 7%) at 100 microM SMX-HA, with only minimal CD4(+) cell death (8 +/- 4%). No significant subpopulation toxicity was shown when incubated with parent drug (SMX). Flow cytometry measuring phosphatidylserine externalization 24 h after treatment with 100 microM and 400 microM SMX-HA revealed 14.1 +/- 0.7% and 25. 6 +/- 4.2% annexin-positive cells, respectively, compared to 3.7 +/- 1.2% in control PBMCs treated with 400 microM SMX. Internucleosomal DNA fragmentation was observed in quiescent and stimulated PBMCs 48 h after incubation with SMX-HA. Our data show that CD8(+) cells are highly susceptible to the toxic effects of SMX-HA through enhanced cell death by apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号