首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using in situ hybridization and immunocytochemistry during interphase and mitosis, we have compared the distribution of ribosomal DNA (rDNA) to that of the nucleolar proteins fibrillarin and RNA polymerase I. During interphase, nucleolar proteins were localized at sites throughout the nucleolus while the bulk of rDNA was localized in a single restricted nucleolar area. During metaphase and anaphase, all six NORs were detected by in situ hybridization, Ag-staining, or by the immunolocalization of RNA polymerase I. During telophase, rDNA and RNA polymerase I were found in a distinct subset of the prenucleolar bodies (PNBs) which obviously must contain the nucleolar organizers. Other numerous PNBs are smaller in size and do not contain detectable amounts of rDNA or RNA polymerase I. Therefore, reconstruction of the nucleolus originates in telophase-specific domains which contain both rDNA and RNA polymerase I.  相似文献   

2.
SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin and condensin to rDNA is altered in the mms21-CH E3-deficient mutant.  相似文献   

3.
4.
5.
6.
The study of chromosomes in oocytes of the quail shows, at the pachytene stage, that microchromosomes are made of a euchromatic segment and a heterochromatic juxtacentromeric region. The heterochromatic regions of the microchromosomes amalgamate between themselves so as to constitute bulky chromocentres from which radiate the euchromatic segments which remain free. At late pachytene, nucleoli appear at the contact of these chromocentres. When the oocytes reach the diplotene stage, the nucleoli become quite large. They are stuck against chromocentres and establish a very close relationship with the euchromatic segments of the microchromosomes which surround or penetrate them. These observations lead one to think that the euchromatic segments of microchromosomes could be bearing nucleolar organizers. The close relations that the nucleolar organizers develop with the bulk of the nucleolus could explain its Feulgen-positive character in the quail.  相似文献   

7.
8.
In metaphase preparations from leucocytes of the toad, Bufo marinus, conspicuous secondary constrictions are present in the number 7 pair of chromosomes. These constrictions were considered to be the nucleolar organizers since they were associated with nucleoli during prophase. In 35 out of 60 individuals taken from natural populations, the homologous nucleolar organizers produced two equal-sized nucleoli and secondary constrictions (Group I animals). Pour animals (Group II) had only one very large secondary constriction in the majority of their metaphase preparations and an abnormally high frequency of cells containing one nucleolus. The remaining 21 animals (Group III) had unequal-sized constrictions in most of their metaphases but were more variable than the individuals of Groups I or II since they also had metaphases with two equal constrictions or only one constriction.The DNA from individuals of each group was hybridized with radioactive ribosomal RNA in order to correlate the size of nucleoli and constrictions with the amount of DNA (rDNA) homologous to ribosomal RNA. The two animals of Group II which were studied contained 0.056% of their genome homologous to ribosomal RNA a value considerably higher than those found for any of the animals of Groups I or III. These high values for rDNA coupled with the morphological appearance of the nucleolar homologues suggested a duplication of the nucleolar organizer in the homologue with the long constriction. The amount of rDNA in animals of Group I and III varied between 0.025 and 0.048% of the genome. Although the animals with unequal-sized constrictions (Group III) had generally lower contents of rDNA than those with equal-sized constrictions (Group I), the values overlapped between the two groups. Further evidence which correlates the size of nucleoli with the number of ribosomal RNA genes comes from studies with a small nucleolar mutant of the Mexican axolotl (Ambystoma mexicanum). Animals homozygous for this deletion were found to contain only 55% of the complement of rDNA present in the wild type. It is concluded that partial deletions and duplications of the nucleolar organizer as well as highly variable contents of rDNA are common in the genome of these amphibians.Presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Biology Department, University of Rochester.  相似文献   

9.
The Sir2 protein mediates gene silencing and repression of recombination at the rDNA repeats in budding yeast. Here we show that Sir2 executes these functions as a component of a nucleolar complex designated RENT (regulator of nucleolar silencing and telophase exit). Net1, a core subunit of this complex, preferentially cross-links to the rDNA repeats, but not to silent DNA regions near telomeres or to active genes, and tethers the RENT complex to rDNA. Net1 is furthermore required for rDNA silencing and nucleolar integrity. During interphase, Net1 and Sir2 colocalize to a subdomain within the nucleous, but at the end of mitosis a fraction of Sir2 leaves the nucleolus and disperses as foci throughout the nucleus, suggesting that the structure of rDNA silent chromatin changes during the cell cycle. Our findings suggest that a protein complex shown to regulate exit from mitosis is also involved in gene silencing.  相似文献   

10.
11.
Ribosomal subunit assembly in the nucleolus is dependent on efficient targeting of ribosomal proteins (RPs) from the cytoplasm into the nucleus and nucleolus. Nuclear/nucleolar localization of a protein is generally mediated by one or more specific stretches of basic amino acids—nuclear/nucleolar localization signals (NLSs/NoLSs). Arabidopsis thaliana RPL23aA has eight putative NLSs/NoLSs (pNLSs/NoLSs). Here we mutated all eight NLS/NoLSs individually and in groups and showed, via transient expression in tobacco cells that nucleolar localization of RPL23aA was disrupted by mutation of various combinations of five or more pNLSs/NoLSs. Mutation of all eight pNLSs/NoLSs, a 50 % reduction in total basic charge of RPL23aA, resulted in a complete disruption of nucleolar localization, however, the protein can still localize to the nucleus. As no individual or specific combination of NoLSs was absolutely required for nucleolar localization, we suggest that nucleolar localization/retention of RPL23aA is dependent on the overall basic charge. In addition to the optimal basic charge conferred by these NoLSs, nucleolar localization/retention of RPL23aA also required a C-terminal putative 26S rRNA binding site. In contrast, in the RPs RPS8A and RPL15A, mutation of just two and three N-terminal pNLSs, respectively, disrupted both nuclear and nucleolar localization of these two RPs, indicating differential signal requirements for nuclear and nucleolar localization of the three Arabidopsis RPs RPL23aA, RPL15A and RPS8A.  相似文献   

12.
13.
Molecular Biology Reports - The 45S rDNA is considered the most useful chromosomal marker for cytogenetic analysis of Passiflora. Amplification of 45S rDNA sequence via PCR are more advantageous...  相似文献   

14.
We have isolated the full-length human 56 kDa selenium binding protein (hSP56) cDNA clone, which is the human homolog of mouse 56 kDa selenium binding protein. The cDNA is 1,668 bp long and has an open reading frame encoding 472 amino acids. The calculated molecular weight is 52.25 kDa and the estimated isoelectric point is 6.13. Using Northern blot hybridization, we found that this 56 kDa selenium binding protein is expressed in mouse heart with an intermediate level between those found in liver/lung/kidney and intestine. We have also successfully expressed hSP56 in Escherichia coli using the expression vector-pAED4. The hSP56 gene is located at human chromosome 1q21–22. J. Cell. Biochem. 64:217–224. © 1997 Wiley-Liss, Inc.  相似文献   

15.
16.
A mutation in the Saccharomyces cerevisiae SEN1 gene causes accumulation of end-matured, intron-containing pre-tRNAs. Cells containing the thermosensitive sen1-1 mutation exhibit reduced tRNA splicing endonuclease activity. However, Sen1p is not the catalytic subunit of this enzyme. We have used Sen1p-specific antibodies for cell fractionation studies and immunofluorescent microscopy and determined that Sentp is a low abundance protein of about 239 kDa. It localizes to the nucleus with a granular distribution. We verified that a region in SEN1 containing a putative nuclear localization signal sequence (NLS) is necessary for nuclear targeting. Furthermore, we found that inactivation of Sen1p by temperature shift of a strain carrying sen1-1 leads to mislocalization of two nucleolar proteins, Nopt and Ssb1 Possible mechanisms are discussed for several related nuclear functions of Sen1p, including tRNA splicing and the maintenance of a normal crescent-shaped nucleolus.  相似文献   

17.
18.
We investigated the presence and localization, in the cells of anucleolate mutant embryos of Xenopus laevis, of three representative small nucleolar RNAs (snoRNAs), U3, U15 and U17, and of two nucleolar proteins, nucleolin and fibrillarin. The levels of the three snoRNAs in the anucleolate mutant are the same as in normal embryos, in contrast to 5S RNA and ribosomal proteins. In situ hybridization showed that, in the absence of fully organized nucleoli, the three RNAs are diffusely distributed in the nucleus and partly associated with a number of small structures. Nucleolin and fibrillarin are also present in the anucleolate embryos as in normal embryos, although there is less nucleolin mRNA in the former. The two nucleolar proteins were localized by immunofluorescence microscopy. Fibrillarin, similar to its associated U3 and U15 snoRNAs, is diffusely distributed in the anucleolate nucleus and is partly associated with small structures, probably prenucleolar bodies and pseudonucleoli. Nucleolin also appears diffusely distributed in the nucleus with some spots of higher concentration, but with a different pattern with respect to fibrillarin. Received: 26 September 1996; in revised form: 14 February 1997 / Accepted: 24 February 1997  相似文献   

19.
A dramatic difference is observed in the intracellular distribution of the high mobility group (HMG) proteins when chicken embryo fibroblasts are fractionated into nucleus and cytoplasm by either mass enucleation of cytochalasin-B-treated cells or by differential centrifugation of mechanically disrupted cells. Nuclei (karyoplasts) obtained by cytochalasin B treatment of cells contain more than 90 percent of the HMG 1, while enucleated cytoplasts contain the remainder. A similar distribution between karyoplasts and cytoplasts is observed for the H1 histones and the nucleosomal core histones as anticipated. The presence of these proteins, in low amounts, in the cytoplast preparation can be accounted for by the small percentage of unenucleated cells present. In contrast, the nuclei isolated from mechanically disrupted cells contain only 30-40 percent of the total HMGs 1 and 2, the remainder being recovered in the cytosol fraction. No histone is observed in the cytosol fraction. Unike the higher molecular weight HMGs, most of the HMGs 14 and 17 sediment with the nuclei after cell lysis by mechanical disruption. The distribution of HMGs is unaffected by incubating cells with cytochalasin B and mechanically fractionating rather than enucleating them. Therefore, the dramatic difference in HMG 1 distribution observed using the two fractionation techniques cannot be explained by a cytochalasin-B-induced redistribution. On reextraction and sedimentation of isolated nuclei obtained by mechanical cell disruption, only 8 percent of the HMG 1 is released to the supernate. Thus, the majority of the HMG 1 originally isolated with these nuclei, representing 35 percent of the total HMG 1, is stably bound, as is all the HMGs 14 and 17. The remaining 65 percent of the HMGs 1 and 2 is unstably bound and leaks to the cytosol fraction under the conditions of mechanical disruption. It is suggested that the unstably bound HMGs form a protein pool capable of equilibrating between cytoplasm and stably bound HMGs.  相似文献   

20.
Nucleophosmin (NPM1) is an abundant nucleolar protein implicated in ribosome maturation and export, centrosome duplication and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia. Mutations at the C-terminal domain led to variant proteins that aberrantly and stably translocate to the cytoplasm. We have previously shown that NPM1 C-terminal domain binds with high affinity G-quadruplex DNA. Here, we investigate the structural determinants of NPM1 nucleolar localization. We show that NPM1 interacts with several G-quadruplex regions found in ribosomal DNA, both in vitro and in vivo. Furthermore, the most common leukemic NPM1 variant completely loses this activity. This is the consequence of G-quadruplex–binding domain destabilization, as mutations aimed at refolding the leukemic variant also result in rescuing the G-quadruplex–binding activity and nucleolar localization. Finally, we show that treatment of cells with a G-quadruplex selective ligand results in wild-type NPM1 dislocation from nucleoli into nucleoplasm. In conclusion, this work establishes a direct correlation between NPM1 G-quadruplex binding at rDNA and its nucleolar localization, which is impaired in the acute myeloid leukemia-associated protein variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号