首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Natural populations host a wealth of genetic variation in longevity and age-specific schedules of reproduction. This variation provides critical information for inferring the evolutionary origin of senescence. Patterns of mutational effects on age-specific fecundity and survival provide additional insight to distinguish alternative models of senescence. In this study,P-elements bearing thewhite minigene were inserted at random into a common genetic background, generating lines ofD. melanogaster with single, stable transposon inserts. A series of 48 single-P-element lines revealed statistically significant heterogeneity in both longevity and fecundity. Longevity and early fecundity were only weakly positively correlated (r=0.286,P=0.0398). Both the pooled sample and 30 of the individual lines exhibited a leveling of age-specific mortality at advanced ages, in opposition to the classical demographic models. To the extent that these mutational effects are representative of naturally-occurring mutations in heterogeneous populations, this result presents a problem for the evolutionary theory of senescence. Natural selection is inefficient at removing deleterious mutations that are expressed only at late ages, and selection may not differentiate between mutations whose effects on longevity are post-reproductive. A leveling of the mortality rate would also be seen if mutations whose expression is delayed until very late simply do not occur. A simulation of mutation-selection balance among the 48P-element tagged lines shows that the mean longevity declines monotonically with increasing mutation rate, consistent with the mutation-accumulation model.  相似文献   

2.
Summary Analysis of electrophoretic loci shows that at least four differences exist in isozymes of long- and short-lived populations ofD. melanogaster, descended by selection from a common ancestral stock. Adults of longlived populations differ in gene dosage of phosphoglucomutase (PGM), NAD malate dehydrogenase (MHD), NADP malic enzyme (ME) and by additional mobility variants of glucose-6-phosphate dehydrogenase (G6PD). Larvae, however, differ only by variants of G6PD. The differences in these enzymes, considered together with the greater flight endurance that long-lived populations have shown elsewhere, suggest that increased glycogen synthesis plays a significant role in the improved life span of selected populations. Adaptation to selection for increased life span may, therefore, derive from an improved ability to use dietary sucrose in the media provided. The distribution of electrophoretic loci agrees with the results of a study indicating the position of genetic elements contributing to life span.  相似文献   

3.
The effects of superoxide dismutase on aging were tested using two differt experimental approaches. In the first, replicated populations with postponed aging were compared with their controls for frequencies of electrophoretic alleles at the SOD locus. Populations with postponed aging had consistently greater frequencies of the allele coding for more active SOD protein. This allele was not part of a segregating inversion polymorphism. The second experimental approach was the extraction ofSOD alleles from different natural populations followed by the construction of differentSOD genotypes on hybrid genetic backgrounds. This procedure did not uncover any statistical effect ofSOD genotype on hybrid genetic backgrounds. This effects on longevity and fecundity due to the family from which a particularSOD genotype was derived. To detect the effects ofSOD genotypes on longevity with high probability would require a ten-fold increase in the number of families used.  相似文献   

4.
Summary The arrangement of bristles on a leg segment of the fruitflyDrosophila melanogaster was studied in various mutants that have abnormal numbers of bristles on this segment. Eighteen mutations at six different genetic loci were analyzed, plus five double or triple mutant combinations. Recessive mutations at theachaete-scute locus were found to affect distinct groups of bristles:achaete mutations remove mechanosensory bristles, whereasscute mutations remove mainly chemosensory bristles. Mechanosensory bristles remain uniformly spaced along the longitudinal axis unless their number decreases below a certain threshold, suggesting that spacing is controlled by cell interactions that cannot function when bristle cells are too far apart. Above a certain threshold, bristle spacing and alignment both become irregular, perhaps due to excessive force from these same interactions. Chemosensory bristles occupy definite positions that are virtually unaffected by removal of individual bristles from the array. Extra chemosensory bristles develop only near the six normal sites. At two of the six sites the multiple bristles tend to exhibit uniform longitudinal spacing — a property confined to mechanosensory bristles in wild-type flies. To explain the various mutant phenotypes the following scheme is proposed, with different mutations directly or indirectly affecting each step: (1) spots and stripes are demarcated within the pattern area, (2) one bristle cell normally arises within each spot, multiple bristle cells within each stripe, (3) incipient bristle cells inhibit neighboring cells from becoming bristle cells, and (4) the bristle cells within each stripe become aligned to form rows and then repel one another to generate uniform spacing.  相似文献   

5.
Summary The complex genetic locuspolyhomeotic (ph) is a member of thePolycomb (Pc)-group of genes and as such is required for the normal expression of ANT-C and BX-C genes. It also has probably other functions since amorphicph alleles display a cell death phenotype in the ventral epidermis of 12-h-old embryos. Here it is shown that lethal alleles ofph (amorph and strong hypomorph) show transformation of most of their segments towards AB8. Theph + product is required autonomously in imaginal cells. The total lack ofph + function prevents viability of the cuticular derivatives of these cells.ph has a strong maternal effect on segmental identity and epidermal development that can not be rescued by one paternally supplied dose ofph + in the zygote. These phenotypes differ substantially from those of previously describedPc-group genes. AmongPc-group genes,ph seems to be the only one that is strongly required both maternally and zygotically for normal embryonic development.  相似文献   

6.
Neuronal communication involves the fusion of neurotransmitter filled synaptic vesicles with the presynaptic terminal. This exocytotic event depends upon proteins present in three separate compartments: the synaptic vesicle, the synaptic cytosol, and the presynaptic membrane. Recent data indicate that the basic components of exocytotic pathways, including those used for neurotransmitter release, are conserved from yeast to human. Genetic dissection of the secretory pathway in yeast, identification of the target proteins cleaved by the clostridial neurotoxins and biochemical characterization of the interactions of synaptic proteins from vertebrates have converged to provide the SNARE (soluble NSF attachment protein receptor) hypothesis for vesicle trafficking. This model proposes that proteins present in the vesicle (v-SNAREs) interact with membrane receptors (t-SNAREs) to provide a molecular scaffold for cytosolic proteins involved in fusion. The hypothesis that these mechanisms function at the synapse relies largely uponin vitro evidence. Recently, genetic approaches in mice, C.elegans and the fruitfly,Drosophila melanagaster, have been used to dissect thein vivo function of numerous proteins involved in synaptic transmission. This review covers recent progress and insights provided by a genetic dissection of neurotransmitter release inDrosophila. In addition, we will provide evidence that the mechanisms for synaptic communication are highly conserved from invertebrates to vertebrates, makingDrosophila an ideal model system to further unravel the intricacies of synaptic transmission.  相似文献   

7.
Summary The derivatives of 110 mosaic genital discs of gynandromorphs have been analysed microscopically. It has been found that theanalia of both sexes are homologous and derive from a single primordium (see Fig. 1a). Whether male or female anal plates are formed depends on the genetic constitution of the cells. This is analogous to the development of male sex combs versus female transversal rows on the forelegs of gynandromorphs. In contrast, the data for thegenitalia (see Fig. 1 b) are best explained if it is assumed that there are two genital primordia in everyDrosophila embryo: a male primordium that will only develop into genitalia if populated by XY (or XO) nuclei, and a female primordium that will only do so if populated by XX nuclei. This model, as depicted in Figure 2, is compatible with all our gynandromorph data and also with observations onMusca andCalliphora where in fact two separate genital primordia are found.  相似文献   

8.
A temperature sensitive lethal allele of thewingless locus ofDrosophila melanogaster together with previously studied lethal and viable alleles in this locus, has been used to study some properties of this locus. These studies show the existence of two lethal phases for thewingless lesion; one during embryogenesis and another during pupation. By growing embryos with temperature sensitivewingless lesion at the permissive temperature and letting the larvae develop at non-permissive temperature, a large-scale cell death and subsequent regeneration were seen to occur in the mutant wing discs. This cell death followed by regeneration alters the normal developmental potential of the wing disc. Disc transplantation experiments show that these discs are incapable of differentiating into wing blade structures.  相似文献   

9.
10.
Summary Electrophoresis of myosin extracts from larvae and adult tissues ofDrosophila melanogaster under non-dissociating conditions indicate that two of the bands seen are myosins. They stain for Ca2+ ATPase activity and when cut and re-run under dissociating conditions are found to contain a myosin heavy chain that co-migrates with rabbit skeletal muscle myosin heavy chain. One of the forms of myosin seen is found primarily in extracts from the leg. The other is common to the adult fibrillar flight muscles and the larval body wall muscles.The electrophoretic evidence for two myosin types is strengthened by the histochemical demonstration of two myofibrillar ATPases on the basis of their lability to acid or alkali preincubation. The myofibrillar ATPase in the leg and the Tergal Depressor of the Trochanter (TDT) are shown to be relatively acid labile and alkali stable. The larval body wall muscles and the adult fibrillar flight muscles have an ATPase which is acid stable and alkali labile. This distribution of the two myofibrillar ATPase coincides with that predicted by electrophoresis of extracts from whole tissue and also locates the two myosins to specific muscle types.  相似文献   

11.
C. Biémont 《Genetica》1992,86(1-3):67-84
This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.  相似文献   

12.
Suitability ofDrosophila melanogaster larvae to their endoparasiteLeptopilina boulardi (Nordlander, 1980) shows wide genetic and epigenetic variation. Experiments were done onDrosophila isofemale lines. When reared in optimal laboratory conditions only 50 % of parasitizedDrosophila larvae gave rise to an adult wasp, and significant variation was observed between lines. In crowded conditions, this average value increased up to 90 % and no more significant variability could be detected between lines. Genetic and demographic consequences of these results are discussed. Associé au C.N.R.S. no 243  相似文献   

13.
Populations ofDrosophila melanogaster that had been subjected to long-term selection favoring either delayed or rapid senescence were compared with respect to age-specific components of male reproductive success involving sperm competition. These components of reproductive success were divided into those related to sperm defense (protection of sperm from other males), and into those related to sperm offense (ability to mate with previously mated females and to displace the sperm of other males). Males were tested at four ages ranging from 1–2d to 5–6 wk after eclosion. Several aspects of sperm defense capability showed clear evidence of senescent decline. Furthermore, males from populations selected for delayed senescence were superior to males from control (rapid senescence) populations with regard to components of sperm defense. The superiority of males from populations with delayed senescence either increased as a function of male age, or was present at all ages tested. These results indicate that the rate of reproductive senescence in maleD. melanogaster can be altered in predictable directions by artificial selection. There were no differences between selection regimes with regard to sperm offense, and most components of sperm offense did not show clear evidence of senescence. The improved late-age reproductive success of males from populations selected for delayed senescence did not appear to entail any cost or trade-off at early ages with respect to the reproductive traits examined in these experiments.  相似文献   

14.
Summary Characterization of sequences homologous to theDrosophila melanogaster gypsy transposable element was carried out inDrosophila subobscura (gypsyDS). They were found to be widely distributed among natural populations of this species. From Southern blot and in situ analyses, these sequences appear to be mobile in this species.GypsyDS sequences are located in both euchromatic and heterochromatic regions. A completegypsyDS sequence was isolated from aD. subobscura genomic library, and a 1.3-kb fragment which aligns with the ORF2 of theD. melanogaster gypsy element was sequenced. Comparisons of this sequence in three species (D. subobscura, D. melanogaster, and D. virilis) indicate that there is greater similarity between theD. subobscura-D. virilis sequences than betweenD. subobscura andD. melanogaster. Molecular divergence ofgypsy sequences betweenD. virilis andD. subobscura is estimated at 16 MY, whereas the most likely divergence time of these two species is more than 60 MY. These data strongly suggest thatgypsy sequences have been horizontally transferred between these species.Offprint requests to: T.M. Alberola  相似文献   

15.
Summary Foldback elements are a family of transposable elements described inDrosophila melanogaster. The members of this dispersed repetitive family have terminal inverted repeats that sometimes flank a central region. The inverted repeats of all the family members are homologous.The study of the distribution and conservation of the foldback elements in differentDrosophila species shows that this distribution is different from that of the hybrid dysgenesis systems (PM and IR). Sequences homologous to foldback elements were observed by Southern blots and in situ hybridization in all species of themelanogaster subgroup and in some species of themontium andtakahashii subgroups. The element was probably already present before the radiation of these subgroups. No evidence of horizontal transmission of the foldback element could be observed.  相似文献   

16.
Summary Distribution of rhodamine-conjugated lysozyme injected into the sixteen-cell syncytium comprising the germ-line portion of theDrosophila follicle is shown to be affected by charge. Positive molecules are able to migrate through intercellular bridges from the oocyte to the nurse cells, but are unable to migrate detectably from nurse cells to the oocyte. Their negatively charged counterparts can move from the nurse cells to the oocyte, but are unable to traverse the intercellular bridges in the counter direction. This charge-dependent movement of molecules is accompanied by an electrical potential difference, focused across the nurse cell-oocyte bridges, which makes the nurse cells negatively charged to the oocyte. The addition of insect hemolymph to the physiological salt solution in which the experiments were performed resulted in only a small increase in the transmembrane resistance, but enhanced the potential difference between oocyte and nurse cells from 0.2±0.3 (SE) mV (nurse cells negative) to 2.3±0.45 (SE) mV (nurse cells negative). Supported by NSF Grant # DB-18617  相似文献   

17.
Larval glue protein fractions ofDrosophila nasuta nasuta were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Seven major and at least four minor glue protein fractions were recognized. Six of the major fractions are glycosylated. They migrate as three prominent doublets (>100, 43, and 30/28 kd). The synthesis of traceable amounts of these major fractions begins already during the second as well as during the early stages of the third larval instar. The 43-kd and the 30/28-kd fractions are coded by X-chromosomal genes. They are probably clustered within the huge puff of division 10, which is the most prominent X-chromosomal puff in the polytene chromosomes of the third larval instar. Complex posttranslational modification of all but one major glue protein fraction (14 kd) leads to the formation of about 15 different protein fractions in the final glue product. The amount of glue protein produced byD. n. nasuta larvae (in relation to the total saliva proteins) is nearly twice the amount produced byD. melanogaster larvae (ca. 55 and 32%, respectively). This work was supported by the University Grants Commission, New Delhi, India, the Deutscher Akademischer Austauschdienst, FR Germany (to S.R.R.), and the Deutsche Forschungsgemeinschaft (Ka 309/9-1).  相似文献   

18.
Summary The laboratory imitator strain (MS) of Drosophila melanogaster is characterized by an elevated frequency of spontaneous mutation (10–3–10–4). Mutations occur in both sexes at premeiotic stages of germ cell development. The increased mutability is a characteristic feature of MS itself, since it appears in the absence of outcrossing. Most of the mutations arising in this strain are unstable: reversions to wild type, high frequency mutation to new mutant states and replicating instability were observed. We have investigated the localization of the transposable genetic elements mdg1, 412, mdg3, gypsy (mdg4), copia and P in the X chromosomes of the MS and in the mutant lines y, ct, sbt derived from it by in situ hybridization. The P element was not found in any of these strains. The distributions of mdg1, 412, mdg3 and copia were identical in the X chromosomes of the MS and its derivatives. However, the sites of hybridization with gypsy differ in the various lines tested. In the polytene chromosomes of MS animals significant variation in location and number of copies of the gypsy element was demonstrated between different larvae; copy numbers as high as 30–40 were observed. These results suggest autonomous transposition of gypsy in the MS genome while several other mobile elements remain stable.  相似文献   

19.
In situ digestion of metaphase and polytene chromosomes and of interphase nuclei in different cell types ofDrosophila nasuta with restriction enzymes revealed that enzymes like AluI, EcoRI, HaeIII, Sau3a and SinI did not affect Giemsa-stainability of heterochromatin while that of euchromatin was significantly reduced; TaqI and SalI digested both heterochromatin and euchromatin in mitotic chromosomes. Digestion of genomic DNA with AluI, EcoRI, HaeIII, Sau3a and KpnI left a 23 kb DNA band undigested in agarose gels while withTaqI, no such undigested band was seen. TheAluI resistant 23 kb DNA hybridized insitu specifically with the heterochromatic chromocentre. It appears that the digestibility of heterochromatin region in genome ofDrosophila nasuta with the tested restriction enzymes is dependent on the availability of their recognition sites.  相似文献   

20.
Summary The influence of muscle development on thorax morphogenesis has been investigated inDrosophila melanogaster. The development of an indirect flight muscle, the dorsal longitudinal muscle (DLM), has been thought to be responsible for the formation of the distinct thoracic curvature. Using aDrosophila mutant (sr/Df(3)sr) in which the DLM is completely missing, we have shown that a normally curved thorax still is produced. Such results indicate that an external structure (epidermis) is capable of developing wholly independent of an absent internal structure (muscle).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号