首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of action of lithium, an effective treatment for bipolar disease, is still unknown. In this study, the mesenteric vascular beds of control rats and rats that were chronically treated with lithium were prepared by the McGregor method, and the mesenteric vascular bed vasorelaxation responses were examined. NADPH-diaphorase histochemistry was used to determine the activity of NOS (nitric oxide synthase) in mesenteric vascular beds. We demonstrated that ACh-induced vasorelaxation increased in the mesenteric vascular bed of rats treated with lithium. Acute No-nitro-L-arginine methyl ester (L-NAME) administration in the medium blocked ACh-induced vasorelaxation in the control group more effectively than in lithium-treated rats, while the vasorelaxant response to sodium nitroprusside, a NO donor, was not different between lithium-treated and control groups. Acute aminoguanidine administration blocked ACh-induced vasorelaxation of lithium-treated rats, but had no effect in the control rats. Furthermore, NOS activity, determined by NADPH-diaphorase staining, was significantly greater in the mesenteric vascular beds from chronic lithium-treated rats than in those from control rats. These data suggest that the enhanced ACh-induced endothelium-derived vasorelaxation in rat mesenteric bed from chronic lithium-treated rats might be associated with increased NOS activity, likely via iNOS. Simultaneous acute L-NAME and indomethacin administration suggests the possible upregulation of EDHF (endothelium-derived hyperpolarizing factor) in lithium-treated rats.  相似文献   

2.
We investigated the source(s) for exhaled nitric oxide (NO) in isolated, perfused rabbits lungs by using isozyme-specific nitric oxide synthase (NOS) inhibitors and antibodies. Each inhibitor was studied under normoxia and hypoxia. Only nitro-L-arginine methyl ester (L-NAME, a nonselective NOS inhibitor) reduced exhaled NO and increased hypoxic pulmonary vasoconstriction (HPV), in contrast to 1400W, an inhibitor of inducible NOS (iNOS), and 7-nitroindazole, an inhibitor of neuronal NOS (nNOS). Acetylcholine-mediated stimulation of vascular endothelial NOS (eNOS) increased exhaled NO and could only be inhibited by L-NAME. Selective inhibition of airway and alveolar epithelial NO production by nebulized L-NAME decreased exhaled NO and increased hypoxic pulmonary artery pressure. Immunohistochemistry demonstrated extensive staining for eNOS in the epithelia, vasculature, and lymphatic tissue. There was no staining for iNOS but moderate staining for nNOS in the ciliated cells of the epithelia, lymphoid tissue, and cartilage cells. Our findings show virtually all exhaled NO in the rabbit lung is produced by eNOS, which is present throughout the airways, alveoli, and vessels. Both vascular and epithelial-derived NO modulate HPV.  相似文献   

3.
Many individuals with cardiac diseases undergo periodic physical conditioning with or without medication to improve cardiovascular health. Therefore, this study investigated the interaction of physical training and chronic nitric oxide synthase (NOS) inhibitor (nitro-L-arginine methyl ester, L-NAME) treatment on blood pressure (BP), cardiac vascular endothelial factor (VEGF) gene expression, and nitric oxide (NO) systems in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10mg/kg, s.c. for 8 weeks), and (4) ET+L-NAME. BP was monitored with tail-cuff method. The animals were sacrificed 24h after last treatments and hearts were isolated and analyzed. Physical conditioning significantly increased respiratory exchange ratio, cardiac NO levels, NOS activity, endothelial eNOS, and inducible iNOS protein expression as well as VEGF gene expression. Training also caused depletion of cardiac malondialdehyde (MDA) levels indicating the beneficial effects of the training. Chronic L-NAME administration resulted in a depletion of cardiac NO level, NOS activity, and eNOS, nNOS, and iNOS protein expressions, as well as VEGF gene expression (2-fold increase in VEGF mRNA). Chronic L-NAME administration also enhanced cardiac MDA levels indicating cardiac oxidative injury. These biochemical changes were accompanied by increases in BP after L-NAME administration. Interaction of training and NOS inhibitor treatment resulted in normalization of BP and up-regulation of cardiac VEGF gene expression. The data suggest that physical conditioning attenuated the oxidative injury caused by chronic NOS inhibition by up-regulating the cardiac VEGF and NO levels and lowering the BP in rats.  相似文献   

4.
区域性血管床对局部注射植物雌激素三羟异黄酮的反应   总被引:3,自引:0,他引:3  
Ji ES  Zhang LH  Wang YH  Yue H  He RR 《生理学报》2003,55(3):255-259
在72只麻醉大鼠,分别采用后肢、肾脏和肠系膜动脉在体恒流灌注法,观察了向灌流环路中直接注射植物雌激素三羟异黄酮(genistein,GST)的血管效应,以所引起的灌流压增减反映血管的收缩和舒张。结果如下:(1)不同剂量的GST(0.4、0.8、1.2mg/k8)注射于股部灌注环路时,剂量依赖性地降低股动脉的灌流压。GST的这一效应可被L-硝基精氨酸甲酯(L-NAME)部分阻断,预先注射蛋白酪氨酸磷酸酶抑制剂正钒酸钠(50μg/kg),可部分抑制GST(0.8mg/kg)引起的效应;(2)向肾血管灌注环路中直接注射GST也可剂量依赖性地降低肾动脉的灌流压,预先注射正钒酸钠可完全抑制GST引起的效应,而L-NAME对此效应没有影响;(3)肠系膜血管灌流环路中注射GST可剂量依赖性地降低其灌流压,这一效应可被正钒酸钠部分抑制,而L-NAME对此无影响。根据上述结果得出的结论是:GST降低后肢、肾脏和肠系膜血管床的血管张力,其机制与酪氨酸激酶抑制有关,而在股动脉则与NO释放有部分关系。  相似文献   

5.
We investigated the pathogenic role of nitric oxide (NO) in indomethacin-induced intestinal ulceration in rats. Nonfasting animals responded to a single administration of indomethacin (10 mg/kg, s.c.), resulting in multiple hemorrhagic lesions in the small intestine, mostly the jejunum and ileum. The damage was first observed 6 hr after indomethacin, the severity increasing progressively with time up to 24 hr later, accompanied with the gene expression of inducible NO synthase (iNOS) and the increase of nitrite and nitrate (NOx) contents in the mucosa. The ocurrence of damage was significantly prevented when iNOS induction was inhibited by dexamethasone given either once 0.5 hr before or twice 0.5 hr before and 6 hr after indomethacin. Likewise, aminoguanidine (a relatively selective iNOS inhibitor) reduced the severity of damage, irrespective whether given twice or as a single injection 6 hr after indomethacin. By contrast, the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) exhibited a biphasic effect, depending on the time of administration; the pre-administration worsened the damage, while the later administration reduced the severity of these lesions, yet both responses occureed in a L-arginine-sensitive manner. Pre-administration of L-NAME, but not aminoguanidine, significantly decreased NOx production in the intestinal mucosa of normal rats, while the increase of NOx production following indomethacin was significantly suppressed by the later administration of aminoguanidine as well as L-NAME. These results suggest that NO exerts a dual action in the pathogenesis of indomethacin-induced intestinal ulceration; NO generated by cNOS is protective against indomethacin, by maintaining the integrity of intestinal mucosa, while NO derived by iNOS plays a key pathogenic role in the ulcerogenic process.  相似文献   

6.
Nitric oxide (NO) and the expression of endothelial (eNOS) and inducible (iNOS) isoforms of nitric oxide synthase (NOS) are recognized as important mediators of physiological and pathological processes of renal ischemia/reperfusion (I/R) injury, but little is known about their role in apoptosis. The ability of the eNOS/NO system to regulate the iNOS/NO system and thus promote apoptosis was assessed during experimental renal I/R. Renal caspase-3 activity and the number of TUNEL-positive cells increased with I/R, but decreased when NOS/NO systems were blocked with L-NIO (eNOS), 1400W (iNOS), and N-nitro-l-arginine methyl ester (L-NAME; a nonselective NOS inhibitor). I/R increased renal eNOS and iNOS expression as well as NO production. The NO increase was eNOS- and iNOS-dependent. Blockage of NOS/NO systems with L-NIO or L-NAME also resulted in a lower renal expression of iNOS and iNOS mRNA; in contrast, eNOS expression was not affected by iNOS-specific blockage. In conclusion, two pathways define the role of NOS/NO systems in the development of apoptosis during experimental renal I/R: a direct route, through eNOS overexpression and NO production, and an indirect route, through expression/activation of the iNOS/NO system, induced by eNOS.  相似文献   

7.
Nitric oxide (NO) involvement in intestinal ischemia-reperfusion (I/R) injury has been widely suggested but its protective or detrimental role remains still question of debate. Here, we examine the impact of supplementation or inhibition of NO availability on intestinal dysmotility and inflammation caused by mesenteric I/R in mice. Ischemia 45min and reperfusion 24h were performed by superior mesenteric artery occlusion in female Swiss mice. Saline-treated sham-operated (S) or normal mice without surgery (N) served as controls. Drugs were subcutaneously injected 0, 4, 8, and 18 h after ischemia. Upper gastrointestinal transit (GIT, estimated through black marker gavage), intestinal myeloperoxidase activity (MPO), intestinal malondialdehyde levels (MDA), Evans blue extravasation (EB), intestinal histological damage, and mean arterial pressure (MAP) were considered. In I/R mice, GIT was significantly delayed compared to S and N groups; MPO activity and EB extravasation enhanced, whereas MDA levels did not change. Compared to N and S groups, in I/R mice selective iNOS inhibitor P-BIT significantly prevented motor, MPO and EB changes; putative iNOS inhibitor aminoguanidine significantly counteracted GIT delay but not neutrophil recruitment and the increase in vascular permeability; NOS inhibitor l-NAME and NO precursor l-arginine were scarcely or no effective. Furthermore, in S mice aminoguanidine caused a significant increase of MPO activity reverted by H(1) histamine receptor antagonist pre-treatment. Unlike P-BIT, aminoguanidine and l-NAME injection increased MAP. These findings confirm a detrimental role for iNOS-derived NO overproduction during reperfusion. Aminoguanidine-associated neutrophil recruitment suggests that this drug could act through mechanisms additional to iNOS inhibition involving both eNOS blockade, as indicated by its hemodynamic effects, and indirect activation of H(1) histamine receptors.  相似文献   

8.
This study examined the role of nitric oxide (NO) on the expression of the hepatic vasoregulatory gene during polymicrobial sepsis. Aminoguanidine (AG, 100 mg/kg) or Nomega-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg) was injected intraperitoneally at 0, 3, 6, 10, and 20 h after a cecal ligation and puncture (CLP). The heart rate increased 24 h after the CLP, and this increase was attenuated by L-NAME and further attenuated by AG. The mean arterial pressure in the CLP animals did not change significantly 24 h after the onset of sepsis but was increased after the L-NAME injection. Sepsis increased the serum aminotransferase levels, which were attenuated by AG but augmented by L-NAME. CLP increased the mRNA level of the ET-1 and ETB receptors in the liver. This increase was prevented by AG but augmented by L-NAME. The level of iNOS and HO-1 mRNA expression were increased by CLP, which was prevented by both AG and L-NAME. The level of TNF-alpha and COX-2 mRNA expression increased after CLP, and was attenuated by AG. These results show that iNOS and eNOS are regulated differently in sepsis. While eNOS appears to have a protective role in liver microcirculation, the strong upregulation of iNOS might contribute to a microvascular dysfunction and hepatic injury.  相似文献   

9.
10.
Hyperoxia may affect lung physiology in different ways. We investigated the effect of hyperoxia on the protein expression of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), nitric oxide (NO) production, and hypoxic pulmonary vasoconstriction (HPV) in rat lung. Twenty-four male rats were divided into hyperoxic and normoxic groups. Hyperoxic rats were placed in > 90% F1O2 for 60 h prior to experiments. After baseline in vitro analysis, the rats underwent isolated, perfused lung experiments. Two consecutive hypoxic challenges (10 min each) were administered with the administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME), in between. We measured intravascular NO production, pulmonary arterial pressure, and protein expression of eNOS and iNOS by immunohistochemistry. We found that hyperoxia rats exhibited increased baseline NO production (P < 0.001) and blunted HPV response (P < 0.001) during hypoxic challenges compared to normoxia rats. We also detected a temporal association between the attenuation in HPV and increased NO production level with a negative pre-L-NAME correlation between HPV and NO (R = 0.52, P < 0.05). After L-NAME administration, a second hypoxic challenge restored the HPV response in the hyperoxic group. There were increased protein expression of eNOS (12.6 +/- 3.1-fold, n = 3) (X200) and iNOS (8.1 +/- 2.6-fold, n = 3) (X200) in the hyperoxia group. We conclude that hyperoxia increases the protein expression of eNOS and iNOS with a subsequent increased release of endogenous NO, which attenuates the HPV response.  相似文献   

11.
Nitric oxide (NO) and NO synthase (NOS) play controversial roles in pancreatic secretion. NOS inhibition reduces CCK-stimulated in vivo pancreatic secretion, but it is unclear which NOS isoform is responsible, because NOS inhibitors lack specificity and three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). Mice having individual NOS gene deletions were used to clarify the NOS species and cellular interactions influencing pancreatic secretion. In vivo secretion was performed in anesthetized mice by collecting extraduodenal pancreatic duct juice and measuring protein output. Nonselective NOS blockade was induced with N(omega)-nitro-L-arginine (L-NNA; 10 mg/kg). In vivo pancreatic secretion was maximal at 160 pmol.kg(-1).h(-1) CCK octapeptide (CCK-8) and was reduced by NOS blockade (45%) and eNOS deletion (44%). Secretion was unaffected by iNOS deletion but was increased by nNOS deletion (91%). To determine whether the influence of NOS on secretion involved nonacinar events, in vitro CCK-8-stimulated secretion of amylase from isolated acini was studied and found to be unaltered by NOS blockade and eNOS deletion. Influence of NOS on in vivo secretion was further examined with carbachol. Protein secretion, which was maximal at 100 nmol.kg(-1).h(-1) carbachol, was reduced by NOS blockade and eNOS deletion but unaffected by nNOS deletion. NOS blockade by L-NNA had no effect on carbachol-stimulated amylase secretion in vitro. Thus constitutive NOS isoforms can exert opposite effects on in vivo pancreatic secretion. eNOS likely plays a dominant role, because eNOS deletion mimics NOS blockade by inhibiting CCK-8 and carbachol-stimulated secretion, whereas nNOS deletion augments CCK-8 but not carbachol-stimulated secretion.  相似文献   

12.
Splanchnic angiogenesis in liver cirrhosis often leads to complications as gastroesophageal variceal hemorrhage and the treatment efficacy is adversely affected by poor portal-systemic collateral vasoresponsiveness related to nitric oxide (NO). Purinergic receptor subtype P2X7 participates in the modulation of inflammation, angiogenesis, fibrogenesis and vasoresponsiveness, but the relevant influence in cirrhosis is unknown. Common bile duct-ligated (CBDL) or sham-operated Spraque-Dawley rats received brilliant blue G (BBG, a P2X7 antagonist and food additive) or vehicle from the 15th to 28th day after operations, then hemodynamics, mesenteric angiogenesis, portal-systemic shunting, liver fibrosis, and protein expressions of angiogenic and fibrogenic factors were evaluated. The influence of oxidized ATP (oATP, another P2X7 receptor antagonist) on the collateral vasoresponsiveness to arginine vasopressin (AVP) was also surveyed. BBG decreased superior mesenteric artery (SMA) flow, portal-systemic shunting, mesenteric vascular density, and mesenteric protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), phospho (p)-VEGFR2, platelet-derived growth factor (PDGF), PDGF receptor beta (PDGFRβ), cyclooxygenase (COX)-1, COX-2, and endothelial NO synthase (eNOS) in CBDL rats. BBG also ameliorated liver fibrosis and down-regulated hepatic interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), PDGF, IL-1β, transforming growth factor-beta (TGF-β), p-extracellular-signal-regulated kinases (ERK), and alpha-smooth muscle actin (α-SMA) expressions in CBDL rats. The collateral vasocontractility to AVP was enhanced by oATP. oATP down-regulated eNOS, inducible NOS (iNOS), VEGF, Akt, p-Akt, and nuclear factor-kappa B (NF-κB) expressions in splenorenal shunt, the most prominent intra-abdominal collateral vessel in rodents. P2X7 antagonism alleviates splanchnic hyperemia, severity of portal-systemic shunting, mesenteric angiogenesis, liver fibrosis, and enhances portal-systemic collateral vasoresponsiveness in cirrhotic rats. P2X7 blockade may be a feasible strategy to control cirrhosis and complications.  相似文献   

13.
Chronic fructose intake induces major cardiovascular and metabolic disturbances and is associated with the development of hypertension due to changes in vascular function. We hypothesized that high fructose intake for 6 weeks would cause metabolic syndrome and lead to initial vascular dysfunction. Male Wistar rats were assigned to receive fructose (FRU, 10%) or drinking water (CON) for 6 weeks. Systolic blood pressure was evaluated by tail plethysmography. Fasting glucose, insulin and glucose tolerance were measured at the end of the follow-up. Mesenteric vascular bed reactivity was tested before and after pharmacological blockade. Western blot analysis was performed for iNOS, eNOS, Nox2 and COX-2. DHE staining was used for vascular superoxide anion detection. Vessel structure was evaluated by optical and electronic microscopy.Fructose intake did not alter blood pressure, but did increase visceral fat deposition and fasting glucose as well as impair insulin and glucose tolerance. Fructose increased NE-induced vasoconstriction compared with CON, and this difference was abrogated by indomethacin perfusion as well as endothelium removal. ACh-induced relaxation was preserved, and the NO modulation tested after L-NAME perfusion was similar between groups. SNP-induced relaxation was not altered. Inducible NOS was increased; however, there were no changes in eNOS, Nox2 or COX-2 protein expression. Basal or stimulated superoxide anion production was not changed by fructose intake. In conclusion, high fructose intake increased NE-induced vasoconstriction through the endothelial prostanoids even in the presence of a preserved endothelium-mediated relaxation. No major changes in vessel structure were detected.  相似文献   

14.
Cardiovascular diseases, such as hypertension, could be programmed in fetal life. Prenatal lipopolysaccharide (LPS) exposure in utero results in increased blood pressure in offspring, but the vascular mechanisms involved are unclear. Pregnant Sprague–Dawley rats were intraperitoneally injected with LPS (0.79 mg/kg) or saline (0.5 ml) on gestation days 8, 10, and 12. The offspring of LPS-treated dams had higher blood pressure and decreased acetylcholine (ACh)-induced relaxation and increased phenylephrine (PE)-induced contraction in endothelium-intact mesenteric arteries. Endothelium removal significantly enhanced the PE-induced contraction in offspring of control but not LPS-treated dams. The arteries pretreated with l-NAME to inhibit nitric oxide synthase (eNOS) in the endothelium or ODQ to inhibit cGMP production in the vascular smooth muscle had attenuated ACh-induced relaxation but augmented PE-induced contraction to a larger extent in arteries from offspring of control than those from LPS-treated dams. In addition, the endothelium-independent relaxation caused by sodium nitroprusside was also decreased in arteries from offspring of LPS-treated dams. The functional results were accompanied by a reduction in the expressions of eNOS and soluble guanylate cyclase (sGC) and production of NO and cGMP in arteries from offspring of LPS-treated dams. Furthermore, LPS-treated dam’s offspring arteries had increased oxidative stress and decreased antioxidant capacity. Three-week treatment with TEMPOL, a reactive oxygen species (ROS) scavenger, normalized the alterations in the levels of ROS, eNOS, and sGC, as well as in the production of NO and cGMP and vascular function in the arteries of the offspring of LPS-treated dams. In conclusion, prenatal LPS exposure programs vascular dysfunction of mesenteric arteries through increased oxidative stress and impaired NO–cGMP signaling pathway.  相似文献   

15.
Nitric oxide (NO) is important for the homeostasis of organ functions. We studied the structural and functional changes in the cardiovascular (CV) and renal systems following early NO deprivation by various nonspecific and specific NO synthase (NOS) inhibitors: N-nitro-L-arginine methyl ester (L-NAME), N-nitro-L-arginine (L-NA), S-methyl-isothiourea (SMT), and L-N6-(1-iminoethyl)-lysine (L-Nil). The aim is to elucidate the involvement of NO through endothelial or inducible NOS (eNOS and iNOS). Drugs were given to spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar Kyoto rats (WKY) from a young age (5-wk-old). Physiological, biochemical, and pathological examinations were performed. L-NAME and L-NA treatment caused a rapid increase in tail cuff pressure (TCP). The TCP of SHR reached a malignant level within 30 days with signs of stroke, proteinuria [corrected] severe glomerular sclerosis, and moderate ventricular hypertrophy (VH). The plasma nitrite/nitrate was reduced, while creatinine, urea nitrogen and uric acid were elevated. The renal tissue cyclic guanosine monophosphate (cGMP) was decreased with an elevated collagen content. The numbers of sclerotic glomeruli, arteriolar and glomerular injury scores were markedly increased, accompanied by reduction in renal blood flow, filtration rate, and fraction. Plasma endothelin-1 was increased following L,-NAME or L-NA treatment for 10 days. The expression of eNOS and iNOS mRNA was depressed by L-NAME and L-NA. The relevant iNOS inhibitors, SMT and L-Nil depressed the iNOS expression, but did not produce significant changes in CV and renal systems. The continuous release of NO via the eNOS system provides a compensatory mechanism to prevent the genetically hypertensive rats from rapid progression to malignant phase. Removal of this compensation results in VH, stroke, glomerular damage, renal function impairment, and sudden death.  相似文献   

16.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

17.
Nitric oxide (NO) is a free radical that is largely produced by three isoforms of NO synthase (NOS): neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). NO regulates numerous processes in the gastrointestinal tract; however, the overall role that NO plays in intestinal inflammation is unclear. NO is upregulated in both ulcerative colitis and Crohn's disease as well as in animal models of colitis. There have been conflicting reports on whether NO protects or exacerbates injury in colitis or is simply a marker of inflammation. To determine whether the site, timing, and level of NO production modulate the effect on the inflammatory responses, the dextran sodium sulfate model of colitis was assessed in murine lines rendered deficient in iNOS, nNOS, eNOS, or e/nNOS by targeted gene disruption. The loss of nNOS resulted in more severe disease and increased mortality, whereas the loss of eNOS or iNOS was protective. Furthermore, concomitant loss of eNOS reversed the susceptibility found in nNOS-/- mice. Deficiencies in specific NOS isoforms led to distinctive alterations of inflammatory responses, including changes in leukocyte recruitment and alterations in colonic lymphocyte populations. The present studies indicate that NO produced by individual NOS isoforms plays different roles in modulating an inflammatory process.  相似文献   

18.
A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.  相似文献   

19.
Vascular tone is regulated through the actions of locally produced agents. Among the vasoconstrictors, the most potent agent is endothelin (ET), which exerts its vasoconstrictor actions principally through ET type A (ET(A)) receptors. Of the vasodilators, nitric oxide (NO) seems to be the most important contributor to the acute regulation of vascular tone. Vasculopathy is an important feature of diabetes mellitus (DM). Endogenous ET-mediated vasoconstrictor tone is augmented in diabetic states, and conflicting results persist concerning the NO system in diabetes. The present study investigated the expressions of inducible NO synthases (iNOS) and endothelial NOS (eNOS) in the heart of diabetic animals and the effects of a selective ET(A) receptor antagonist on these alterations. Type I diabetes was induced by intraperitoneal injection of streptozotocin (65 mg/kg) in Sprague-Dawley rats, while control (Con) rats received only citrate buffer. After 1 week, the streptozotocin-administered rats were randomly divided into two groups: the selective ET(A) receptor antagonist-administered group (DM+TA-0201, 1 mg/kg/day, by osmotic minipump for 2 weeks) and the DM+vehicle group (comprising the diabetic rats that received saline). The random blood glucose level was 405 +/- 103 mg/dl in DM animals, and this level was unchanged by ET antagonism. Body weight was more greatly decreased in DM rats than in Con rats, but the left ventricle to body weight ratio was increased in the DM group and was unaffected by ET antagonism. Protein expressions of eNOS and iNOS were assessed in the left ventricular tissues. eNOS expression was significantly increased in DM heart and was greatly inhibited by the treatment with ET antagonist. The expression of iNOS was also increased in early DM heart but was reversed by the ET antagonist. Thus, endothelin antagonism might be beneficial for DM heart by reversing the upregulated eNOS and iNOS expressions.  相似文献   

20.
This study investigated the hypothesis that atrial natriuretic peptide (ANP) responses are mediated by particulate guanylate cyclase in the pulmonary vascular bed of the cat. When tone in the pulmonary vascular bed was raised to a high steady level with the thromboxane mimic U-46619, injections of ANP caused dose-related decreases in lobar arterial pressure. After administration of HS-142-1, an ANP-A- and ANP-B-receptor antagonist, vasodilator responses to ANP were reduced. The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) enhanced ANP vasodilator responses, suggesting that inhibition of NO modulates ANP responses. L-NAME administration with constant 8-bromo-cGMP infusion attenuated the increased vasodilator response to ANP, suggesting that supersensitivity to ANP occurs upstream to activation of a cGMP-dependent protein kinase. In pulmonary arterial rings, ANP produced concentration-related vasorelaxant responses with and without endothelium. Methylene blue, L-NAME, or N(omega)-monomethyl-L-arginine did not alter ANP vasorelaxant responses. These data show that ANP supersensitivity observed in the intact pulmonary vascular bed is not seen in isolated pulmonary arterial segments, suggesting that it may only occur in resistance vessel elements. These results suggest that ANP responses occur through activation of ANP-A and/or -B receptors in an endothelium-independent manner and are modulated by NO in resistance vessel elements in the pulmonary vascular bed of the cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号