首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
植物蛋白酶抑制剂在植物抗虫与抗病中的作用   总被引:13,自引:0,他引:13  
综述了植物蛋白酶抑制剂抗虫与抗病作用的研究进展.蛋白酶抑制剂广泛存在于植物体内,与植物抗虫抗病密切相关.植物蛋白酶抑制剂能抑制昆虫肠道蛋白酶,使昆虫生长发育缓慢,甚至死亡.但取食蛋白酶抑制剂后,昆虫能迅速分泌对抑制剂不敏感的蛋白酶,而使蛋白酶抑制剂无效.食物蛋白的含量和质量也影响植物蛋白酶抑制剂的抗虫效果.病原菌的感染能诱导植物产生蛋白酶抑制剂,诱导产生的蛋白酶抑制剂能抑制病原菌的生长.  相似文献   

2.
This review considers the main groups of hydrolytic enzymes associated with plant pathogens, as well as proteinaceous inhibitors of these enzymes, acting as the components of plant defense system. The role of hydrolases is described in the development of a pathological process in plant tissues. Significance of hydrolase inhibitors in the development of plant resistance to pathogens is analyzed. It is proposed that specific interactions in the “host plant–pathogen” system, involving hydrolytic enzymes and their proteinaceous inhibitors, depend on the nutritional specialization of fungi.  相似文献   

3.
. The cyclin-dependent kinase (CDK) inhibitors ICK1 and ICK2 have been shown to inhibit plant CDK activity in vitro, and the expression of ICK1 was able to inhibit cell division in the plant and modify plant growth and morphology. In order to characterize other ICK1-related inhibitor genes and understand possible differences among plant CDK inhibitors, the interactions of plant CDK inhibitors with cell cycle regulators were analysed in the yeast two-hybrid system and their functions were compared in transgenic Arabidopsis plants. Yeast two-hybrid results indicate that there are likely two groups of plant CDK inhibitors. The A-group inhibitors ICK1, ICK2, ICK6 and ICK7 interact with Cdc2a and three D-type cyclins (D1, D2 and D3), while the B-group inhibitors ICK4, ICK5 and ICKCr interact with D-type cyclins but not with Arabidopsis Cdc2a. ICK1 (A-group), and ICK4 and ICKCr (B-group) were expressed separately in transgenic Arabidopsis plants. Overexpression of the three inhibitor genes resulted in plants of a smaller size with serrated leaves and modified flowers. These plants also had reduced nuclear DNA content (polyploidy), suggesting that expression of these inhibitors affected endoreduplication. Further, there were apparent differences in the strength of effect among the inhibitors. These results provide the first evidence on the CDK inhibitory function for ICK4 and ICKCr. They also suggest that these CDK inhibitors play important roles in cell division and plant growth.  相似文献   

4.
A high degree of selectivity toward the target site of the pest organism is a desirable attribute for new safer agrochemicals. To assist in the design of novel herbicides, we determined the crystal structures of the herbicidal target enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD; EC 1.13.11.27) from the plant Arabidopsis thaliana with and without an herbicidal benzoylpyrazole inhibitor that potently inhibits both plant and mammalian HPPDs. We also determined the structure of a mammalian (rat) HPPD in complex with the same nonselective inhibitor. From a screening campaign of over 1000 HPPD inhibitors, six highly plant-selective inhibitors were found. One of these had remarkable (>1600-fold) selectivity toward the plant enzyme and was cocrystallized with Arabidopsis HPPD. Detailed comparisons of the plant and mammalian HPPD-ligand structures suggest a structural basis for the high degree of plant selectivity of certain HPPD inhibitors and point to design strategies to obtain potent and selective inhibitors of plant HPPD as agrochemical leads.  相似文献   

5.
Plant cell walls are predominantly composed of polysaccharides, which are connected in a strong, yet resilient network. They determine the size and shape of plant cells and form the interface between the cell and its often hostile environment. To penetrate the cell wall and thus infect plants, most phytopathogens secrete numerous cell wall degrading enzymes. Conversely, as a first line of defense, plant cell walls contain an array of inhibitors of these enzymes. Scientific knowledge on these inhibitors significantly progressed in the past years and this review is meant to give a comprehensive overview of plant inhibitors against microbial cell wall degrading enzymes and their role in plant protection.  相似文献   

6.
Protease inhibitors mediate a natural form of plant defence against insects, by interfering with the digestive system of the insect. In this paper, affinity chromatography was used to isolate trypsins and chymotrypsins from Helicoverpa zea larvae, which had been raised on inhibitor-containing diet. Sensitivity of the fractions to inhibition by plant proteinase inhibitors was tested, and compared to the sensitivity of proteinases found in insects raised on diet to which no inhibitor had been added. The isolated chymotrypsin activity was found to be less sensitive to plant protease inhibitors. The sensitivity of the isolated trypsin activity was found to be intermediate between completely sensitive trypsins and completely insensitive forms that have been previously described. Mass spectrometry was used to identify one trypsin and two chymotrypsins in the partially purified protease fraction. The sequence features of these proteases are discussed in relation to their sensitivity to inhibitors. The results provide insight in the enzymes deployed by Helicoverpa larvae to overcome plant defence.  相似文献   

7.

Background

Peptidases are key proteins involved in essential plant physiological processes. Although protein peptidase inhibitors are essential molecules that modulate peptidase activity, their global presence in different plant species remains still unknown. Comparative genomic analyses are powerful tools to get advanced knowledge into the presence and evolution of both, peptidases and their inhibitors across the Viridiplantae kingdom.

Results

A genomic comparative analysis of peptidase inhibitors and several groups of peptidases in representative species of different plant taxonomic groups has been performed. The results point out: i) clade-specific presence is common to many families of peptidase inhibitors, being some families present in most land plants; ii) variability is a widespread feature for peptidase inhibitory families, with abundant species-specific (or clade-specific) gene family proliferations; iii) peptidases are more conserved in different plant clades, being C1A papain and S8 subtilisin families present in all species analyzed; and iv) a moderate correlation among peptidases and their inhibitors suggests that inhibitors proliferated to control both endogenous and exogenous peptidases.

Conclusions

Comparative genomics has provided valuable insights on plant peptidase inhibitor families and could explain the evolutionary reasons that lead to the current variable repertoire of peptidase inhibitors in specific plant clades.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-812) contains supplementary material, which is available to authorized users.  相似文献   

8.
Physicochemical and functional characteristics of plant protein proteinase inhibitors as antistress biopolymers were studied to determine the mechanisms for plant resistance to phytopathogens and to obtain disease-resistant cereal and leguminous cultures. The activity of trypsin, chymotrypsin, and subtilisin inhibitors varied in monocotyledonous and dicotyledonous cultures. Study varieties of leguminous and cereal cultures were shown to contain endogenous inhibitors specific to proteinases of phytopathogenic fungi Fusarium, Colletotrichum, Helminthosporium, and Botrytis. These inhibitors were characterized by species specificity and variety specificity. Protease inhibitors from buckwheat seeds inhibited proteases of fungal pathogens and suppressed germination of spores and growth of the fungal mycelium. Our results suggest that proteinaceous inhibitors of proteinases are involved in the protective reaction of plants under stress conditions.  相似文献   

9.
Literature data on plant proteinase inhibitors as multifunctional proteins are reviewed. In addition to the direct inhibitory effect on enzymes, these proteins may function in other processes, particularly under biotic and environmental stressful conditions. A special section discusses the relationships of plant proteinase inhibitors and storage proteins.  相似文献   

10.
以烟草(+)天仙子杂交种愈伤组织、苜蓿和小麦愈伤组织为实验材料,用愈创木酚法测定过氧化物酶(EC.1.11.7 POD)活性,首次报道了用分离原生质体的脱壁酶液能够诱导植物细胞产生POD 抑制因子,所试材料经脱壁酶液处理后均测不出POD 活性,并且对POD活性具有抑制作用。此类POD 抑制因子是小分子物质,具有较强的热稳定性,一些迹象表明它们不是酚类物质。POD 抑制因子可能是通过影响POD 催化合成的初始反应产物的稳定性,来达到其抑制效能。不同种属来源植物细胞产生的POD 抑制因子在抑制作用上无明显差异。至于POD 抑制因子的稳定性,在原生质体培养难易程度不同的植物材料间有差异。文中讨论了POD 抑制因子的产生和清除对培养原生质体细胞壁的再生修复及对培养状况的影响。  相似文献   

11.
Data in the literature on plant proteinase inhibitors as multifunctional proteins are reviewed. In addition to the direct inhibitory effect on enzymes, these proteins may function in other processes, particularly under biotic and environmentally stressful conditions. A special section discusses the relationships of plant proteinase inhibitors and storage proteins.  相似文献   

12.
Pressey R 《Plant physiology》1968,43(9):1430-1434
Invertase inhibitors have been isolated and partially purified from red beets, sugar beets, and sweet potatoes. These inhibitors are thermolabile proteins with molecular weights of 18,000 to 23,000. They do not inhibit yeast and Neurospora invertases, but they are reactive with potato tuber invertase and other plant invertases with pH optima near 4.5. There are differences in reactivity of the inhibitors with some of the plant invertases, however. For most invertases, red beet and sugar beet inhibitors are most effective at pH 4.5 while sweet potato inhibitor is most effective at pH 5.  相似文献   

13.
Receptor-like kinases (RLKs) constitute the largest receptor family involved in the regulation of plant immunity and growth, but small-molecule inhibitors that target RLKs to improve agronomic traits remain unexplored. The RLK member FERONIA (FER) negatively regulates plant resistance to certain soil-borne diseases that are difficult to control and cause huge losses in crop yields and economy. Here, we identified 33 highly effective FER kinase inhibitors from 1494 small molecules by monitoring FER autophosphorylation in vitro. Four representative inhibitors (reversine, cenisertib, staurosporine and lavendustin A) inhibited the kinase activity of FER and its homologues in several crops by targeting the conserved ATP pocket in the kinase structure. FER contributes to the physiological impact of representative inhibitors in plants. The treatment of roots with reversine, staurosporine and lavendustin A enhanced innate immunity in plant roots and thus alleviated soil-borne diseases in tobacco, tomato and rice without growth penalties. Consistently, RNA sequencing assays showed that lavendustin A and reversine exert profound impacts on immunity-related gene expression. Our results will set a new milestone in the development of the plant RLK kinase regulation theory and provide a novel strategy for the prevention and control of plant soil-borne diseases without growth penalties.  相似文献   

14.
植物蛋白酶抑制素抗虫作用的研究进展   总被引:16,自引:2,他引:16  
王琛柱  钦俊德 《昆虫学报》1997,40(2):212-218
植物自身为抵抗昆虫等的为害,在长期进化过程中形成了复杂的化学防御体系,其中起主导作用的是一些植物化学物质。这些化合物能影响昆虫(或其它有机体)的生长、行为和群体生物学,因而又称为它感素(allelochemics)[1~3]。大多数它感素为植物的利己素,可以单一或协同对害虫起作用,构成植物的抗虫性。根据植物对昆虫取食的反应,可将植物的化学防御概括为两类:一类是组成型防御[4],即抗虫物质不依赖于昆虫的取食而存在于植物组织中;另一类是诱导型防御[5~9],即植物仅当昆虫取食时才大量合成抗虫物质。诱导型抗虫物质当然亦可以组…  相似文献   

15.
Enzyme-inhibitor interactions at the plant-pathogen interface   总被引:1,自引:0,他引:1  
The plant apoplast during plant-pathogen interactions is an ancient battleground that holds an intriguing range of attacking enzymes and counteracting inhibitors. Examples are pathogen xylanases and polygalacturonases that are inhibited by plant proteins like TAXI, XIP, and PGIP; and plant glucanases and proteases, which are targeted by pathogen proteins such as GIP1, EPI1, EPIC2B, and AVR2. These seven well-characterized inhibitors have different modes of action and many probably evolved from inactive enzymes themselves. Detailed studies of the structures, sequence variation, and mutated proteins uncovered molecular struggles between these enzymes and their inhibitors, resulting in positive selection for variant residues at the contact surface, where single residues determine the outcome of the interaction.  相似文献   

16.
Recently I found that glycosidase inhibitors such as castanospermine, deoxynojirimycin, swainsonine, 2-acetamindo 2,3-dideoxynojirimycin, and deoxymannojirimycin change the N-glycan structure of root glycoproteins, and that the glucosidase inhibitors castanospermine and deoxynojirimycin suppress the growth of Raphanus sativus seedlings (Mega, T., J. Biochem., 2004). The present study undertook to see whether the growth suppression is due to the inhibition of glucose trimming in endoplasmic reticulum (ER). The study, using three glucosidase inhibitors, castanospermine, N-methyl deoxynojirimycin, and deoxynojirimycin, upon the growth of R. sativus foliage leaf, made clear that glucose trimming is indispensable for plant growth, because the inhibition of glucose trimming correlated with leaf growth. On the other hand, processing inhibition in the Golgi apparatus by other glycosidase inhibitors had little effect on plant growth, although N-glycan processing was disrupted depending on inhibitor specificity. These results suggest that N-glycan processing after glucosidase processing is dispensable for plant growth and cell differentiation.  相似文献   

17.
This study is the first to demonstrate the activity of putative cellulosomal protease/peptidase inhibitors (named cyspins) of Clostridium cellulovorans, using the Saccharomyces cerevisiae display system. Cyspins exhibited inhibitory activities against several representative plant proteases. This suggests that these inhibitors protect their microbe and cellulosome from external attack by plant proteases.  相似文献   

18.
Reader domains that recognize methylated lysine and arginine residues on histones play a role in the recruitment, stabilization, and regulation of chromatin regulatory proteins. Targeting reader proteins with small molecule and peptidomimetic inhibitors has enabled the elucidation of the structure and function of specific domains and uncovered their role in diseases. Recent progress towards chemical probes that target readers of lysine methylation, including the Royal family and plant homeodomains (PHD), is discussed here. We highlight recently developed covalent cyclic peptide inhibitors of a plant homeodomain. Additionally, inhibitors targeting previously untargeted Tudor domains and chromodomains are discussed.  相似文献   

19.
Dittmann K  Riese U  Hamburger M 《Phytochemistry》2004,65(21):2885-2891
An assay for the HPLC-based search for monoamine oxidase-A (MAO-A) inhibitors in plant extracts was established. It combines human recombinant MAO-A, expressed as GST-fusion protein in yeast, with a kinetic measurement of the conversion of kynuramine to 4-hydroxyquinoline. Substrate selectivity and kinetic parameters of the GST-fusion protein were comparable to the wild-type enzyme. The applicability of the assay to HPLC-based activity profiling was tested with plant extracts spiked with small amounts of known MAO inhibitors.  相似文献   

20.
The review deals with analysis of the possibility of the use of genes of inhibitors of proteolytic enzymes of plants to increase plant tolerance to insect pests and phytopathogens. The idea of using protease inhibitors for plant defense is strongly supported, first, by their wide distribution in plant tissues and high activity towards various proteolytic enzymes of insects, bacteria and fungi. The results obtained for the last years indicate that the genetic engineering approach is perspective for solving of this kind of problems. The main losses and advantages of the discussed approach are also considered. The described approach for increase of plant tolerance to insects and pathogens has few advantages as compared to traditional ones and belongs to ecologically pure technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号