首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Canavan disease: mutations among Jewish and non-jewish patients.   总被引:9,自引:4,他引:5  
Canavan disease is an autosomal recessive leukodystrophy caused by the deficiency of aspartoacylase (ASPA). Sixty-four probands were analyzed for mutations in the ASPA gene. Three point mutations--693C-->A, 854A-->C, and 914C-->A--were identified in the coding sequence. The 693C-->A and 914C-->A base changes, resulting in nonsense tyr231-->ter and missense ala305-->glu mutations, respectively, lead to complete loss of ASPA activity in in vitro expression studies. The 854A-->C transversion converted glu to ala in codon 285. The glu285-->ala mutant ASPA has 2.5% of the activity expressed by the wild-type enzyme. A fourth mutation, 433 --2(A-->G) transition, was identified at the splice-acceptor site in intron 2. The splice-site mutation would lead to skipping of exon 3, accompanied by a frameshift, and thus would produce aberrant ASPA. Of the 128 unrelated Canavan chromosomes analyzed, 88 were from probands of Ashkenazi Jewish descent. The glu285-->ala mutation was predominant (82.9%) in this population, followed by the tyr231-->ter (14.8%) and 433 --2(A-->G) (1.1%) mutations. The three mutations account for 98.8% of the Canavan chromosomes of Ashkenazi Jewish origin. The ala305-->glu mutation was found exclusively in non-Jewish probands of European descent and constituted 60% of the 40 mutant chromosomes. Predominant occurrence of certain mutations among Ashkenazi Jewish and non-Jewish patients with Canavan disease would suggest a founding-father effect in propagation of these mutant chromosomes.  相似文献   

2.
Canavan disease is inherited as an autosomal recessive trait that is caused by the deficiency of aspartoacylase (ASPA). The majority of patients with Canavan disease are from an Ashkenazi Jewish background. Mutations in ASPA that lead to loss of enzymatic activity have been identified, and E285A and Y231X are the two predominant mutations that account for 97% of the mutant chromosomes in Ashkenazi Jewish patients. The current study was aimed at finding the molecular basis of Canavan disease in 25 independent patients of non-Jewish background. Eight novel and three previously characterized mutations accounted for 80% (40/50) of mutant chromosomes. The A305E missense mutation accounted for 48% (24/50) of mutant chromosomes in patients of western European descent, while the two predominant Jewish mutations each accounted for a single mutant chromosome. The eight novel mutations identified included 1- and 4-bp deletions (32 deltaT and 876 deltaAGAA, respectively) and I16T, G27R, D114E, G123E, C152Y, and R168C missense mutations. The homozygous 32 deltaT deletion was identified in the only known patient of African-American origin with Canavan disease. The heterozygosity for 876 deltaAGAA mutation was identified in three independent patients from England. Six single-base changes leading to missense mutations were identified in patients from Turkey (D114E, R168C), The Netherlands (I16T), Germany (G27R), Ireland (C152Y), and Canada (G123E). A PCR-based protocol is described that was used to introduce mutations in wild-type cDNA. In vitro expression of mutant cDNA clones demonstrated that all of these mutations led to a deficiency of ASPA and should therefore result in Canavan disease.  相似文献   

3.
BACKGROUND: Thirty-six mutations that cause Gaucher disease, the most common glycolipid storage disorder, are known. Although both alleles of most patients with the disease contain one of these mutations, in a few patients one or both disease-producing alleles have remained unidentified. Identification of mutations in these patients is useful for genetic counseling. MATERIALS AND METHODS: The DNA from 23 Gaucher disease patients in whom at least one glucocerebrosidase allele did not contain any of the 36 previously described mutations has been examined by single strand conformation polymorphism (SSCP) analysis, followed by sequencing of regions in which abnormalities were detected. RESULTS: Eight previously undescribed mutations were detected. In exon 3, a deletion of a cytosine at cDNA nt 203 was found. In exon 6, three missense mutations were identified: a C-->A transversion at cDNA nt 644 (Ala176-->Asp), a C-->A transversion at cDNA nt 661 that resulted in a (Pro182-->Thr), and a G-->A transition at cDNA nt 721 (Gly202-->Arg). Two missense mutations were found in exon 7: a G-->A transition at cDNA nt 887 (Arg257-->Gln) and a C-->T at cDNA nt 970 (Arg285-->Cys). Two missense mutations were found in exon 9: a T-->G at cDNA nt 1249 (Trp378-->Gly) and a G-->A at cDNA nt 1255 (Asp380-->Asn). In addition to these disease-producing mutations, a silent C-->G transversion at cDNA nt 1431, occurring in a gene that already contained the 1226G mutation, was found in one family. CONCLUSIONS: The mutations described here and previously known can be classified as mild, severe, or lethal, on the basis of their effect on enzyme production and on clinical phenotype, and as polymorphic or sporadic, on the basis of the haplotype in which they are found. Rare mutations such as the new ones described here are sporadic in nature.  相似文献   

4.
We have evaluated the feasibility of using PCR-based mutation screening for non-Jewish enzyme-defined carriers identified through Tay-Sachs disease-prevention programs. Although Tay-Sachs mutations are rare in the general population, non-Jewish individuals may be screened as spouses of Jewish carriers or as relatives of probands. In order to define a panel of alleles that might account for the majority of mutations in non-Jewish carriers, we investigated 26 independent alleles from 20 obligate carriers and 3 affected individuals. Eighteen alleles were represented by 12 previously identified mutations, 7 that were newly identified, and 1 that remains unidentified. We then investigated 46 enzyme-defined carrier alleles: 19 were pseudodeficiency alleles, and five mutations accounted for 15 other alleles. An eighth new mutation was detected among enzyme-defined carriers. Eleven alleles remain unidentified, despite the testing for 23 alleles. Some may represent false positives for the enzyme test. Our results indicate that predominant mutations, other than the two pseudodeficiency alleles (739C-->T and 745C-->T) and one disease allele (IVS9+1G-->A), do not occur in the general population. This suggests that it is not possible to define a collection of mutations that could identify an overwhelming majority of the alleles in non-Jews who may require Tay-Sachs carrier screening. We conclude that determination of carrier status by DNA analysis alone is inefficient because of the large proportion of rare alleles. Notwithstanding the possibility of false positives inherent to enzyme screening, this method remains an essential component of carrier screening in non-Jews. DNA screening can be best used as an adjunct to enzyme testing to exclude known HEXA pseudodeficiency alleles, the IVS9+1G-->A disease allele, and other mutations relevant to the subject's genetic heritage.  相似文献   

5.
Recently, a mutation at nucleotide 1193 of the glucocerebrosidase gene was described in a patient with type 1 Gaucher disease. This mutation destroys a TaqI site in a polymerase chain reaction (PCR)-amplified fragment. We used digestion with this enzyme to screen DNA samples from Gaucher disease patients representing 23 previously unidentified alleles and discovered that this site had been destroyed in three samples. However, the mutation that caused this change proved to be a CT substitution at cDNA nucleotide 1192 (Genomic 5408; 359ArgEnd). Fortuitously, another TaqI site was destroyed by a different mutation, a GA mutation at nt 1312 (Genomic 5927; 399AspAsn). Both of these mutations were functionally severe in that they were associated with type 2 (acute neuronopathic) Gaucher disease.  相似文献   

6.
Gaucher disease: gene frequencies in the Ashkenazi Jewish population.   总被引:7,自引:1,他引:6  
DNA from over 2,000 Ashkenazi Jewish subjects has been examined for the four most common Jewish Gaucher disease mutations, which collectively account for about 96% of the disease-producing alleles in Jewish patients. This population survey has made possible the estimation of gene frequencies for these alleles. Eighty-seven of 1,528 individuals were heterozygous for the 1226G (N370S) mutation, and four presumably well persons were homozygous for this mutation. The gene frequency for the 1226G allele was calculated to be .0311, and when these data were pooled with those obtained previously from another 593 Jewish subjects, a gene frequency of .032 with a standard error of .004 was found. Among 2,305 normal subjects, 10 were found to be heterozygous for the 84GG allele, giving a gene frequency of .00217 with a standard error of .00096. No examples of the IVS2(+1) mutation were found among 1,256 samples screened, and no 1448C (L444P) mutations were found among 1,528 samples examined. Examination of the distribution of Gaucher disease gene frequencies in the general population shows that the ratio of 1226G mutations to 84GG mutations is higher than that in the patient population. This is presumed to be due to the fact that homozygotes for the 1226G mutation often have late-onset disease or no significant clinical manifestations at all. To bring the gene frequency in the patient population into conformity with the gene frequency in the general population, nearly two-thirds of persons with a Gaucher disease genotype would be missing from the patient population, presumably because their clinical manifestations were very mild.  相似文献   

7.
Type 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .03), whereas the 84GG insertion (q approximately .003) occurs exclusively in the Ashkenazim. To investigate the genetic history of these mutations in the AJ population, short tandem repeat (STR) markers were used to map a 9.3-cM region containing the GBA locus and to genotype 261 AJ N370S chromosomes, 60 European non-Jewish N370S chromosomes, and 62 AJ 84GG chromosomes. A highly conserved haplotype at four markers flanking GBA (PKLR, D1S1595, D1S2721, and D1S2777) was observed on both the AJ chromosomes and the non-Jewish N370S chromosomes, suggesting the occurrence of a founder common to both populations. Of note, the presence of different divergent haplotypes suggested the occurrence of de novo, recurrent N370S mutations. In contrast, a different conserved haplotype at these markers was identified on the 84GG chromosomes, which was unique to the AJ population. On the basis of the linkage disequilibrium (LD) delta values, the non-Jewish European N370S chromosomes had greater haplotype diversity and less LD at the markers flanking the conserved haplotype than did the AJ N370S chromosomes. This finding is consistent with the presence of the N370S mutation in the non-Jewish European population prior to the founding of the AJ population. Coalescence analyses for the N370S and 84GG mutations estimated similar coalescence times, of 48 and 55.5 generations ago, respectively. The results of these studies are consistent with a significant bottleneck occurring in the AJ population during the first millennium, when the population became established in Europe.  相似文献   

8.
Gaucher disease is inherited in an autosomal recessive manner and is the most prevalent lysosomal storage disease. Gaucher disease has marked phenotypic variation and molecular heterogeneity, and several simple and complex alleles of the acid beta-glucosidase gene have been identified as causal to this disease. Certain combinations of alleles have been shown to correlate well with the severity of the disease, but many Gaucher disease patients exist whose disease is not explained by any of the published mutations. This study was undertaken to identify mutant alleles in such incompletely characterized Gaucher disease, in an attempt to find further correlations between clinical phenotype and the presence of acid beta-glucosidase alleles. RNA was isolated from Gaucher cell lines and converted to cDNA, the cDNA was amplified by PCR and cloned, and several clones for each allele were sequenced. Several new singly mutated and multiply mutated alleles were identified, and sequence-specific oligonucleotide hybridization was used to verify the presence of these mutations in the genome of these patients. All newly identified mutations occurred only rarely in the Gaucher disease population, making it difficult to determine whether inheritance of a particular combination of alleles always correlates with the clinical manifestations seen in the test patients. Three of the newly described alleles were single missense mutations in exon 8, one was a single missense mutation in exon 5, and the fifth was a complex allele, comprising a series of different point mutations scattered throughout exons 5 and 6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Mutations in the HEX A gene, encoding the alpha-subunit of beta-hexosaminidase A (Hex A), are the cause of Tay-Sachs disease as well as of juvenile, chronic, and adult GM2 gangliosidoses. We have examined the distribution of three mutations--a 4-nucleotide insertion in exon 11, a G----C transversion at a 5' splice site in intron 12, and a 269Gly----Ser amino acid substitution in exon 7--among individuals enzymatically diagnosed as carriers of Hex A deficiency. Mutation analysis included polymerase chain reaction (PCR) amplification of the relevant regions of genomic DNA, followed by allele-specific oligonucleotide hybridization; another test for heterozygosity of the exon 11 insertion was based on the formation of heteroduplex PCR fragments of low electrophoretic mobility. The percentage distribution of the exon 11, intron 12, exon 7, and unidentified mutant alleles was 73:15:4:8 among 156 Jewish carriers of Hex A deficiency and 16:0:3:81 among 51 non-Jewish carriers. Regardless of the mutation, the ancestral origin of the Jewish carriers was primarily eastern and (somewhat less often) central Europe, whereas for the non-Jewish carriers it was western Europe. Because a twelfth of the Jewish carriers and four-fifths of the non-Jewish carriers of Hex A deficiency had mutant alleles other than the three common ones tested, enzyme-based tests cannot be replaced by DNA-based tests at the present time. However, DNA-based tests for two-carrier couples could identify those at risk for the chronic/adult GM2 gangliosidoses rather than for infantile Tay-Sachs disease.  相似文献   

10.
Characterization of mutations in Gaucher patients by cDNA cloning.   总被引:16,自引:6,他引:10       下载免费PDF全文
Mutated cDNA clones containing the entire coding sequence of human glucocerebrosidase were isolated from libraries originated from Gaucher patients. Sequence analysis of a mutated cDNA derived from a type II Gaucher patient revealed a C-to-G transversion causing a substitution of an arginine for a proline at residue 415. This change creates a new cleavage site for the enzyme HhaI in the mutated cDNA. Allele-specific oligonucleotide hybridization made it possible to show that this mutation exists in the genomic DNA of the patient. From a cDNA library originated from a type I Gaucher patient, a mutated allele was cloned that contains a T-to-C transition causing a substitution of proline for leucine at residue 444 and creating a new NciI site. This mutation is identical to that described by S. Tsuji and colleagues in genomic DNA from type I, type II, and type III patients. Since the new NciI site generates RFLP, it was used to test the existence of this mutated allele in several Gaucher patients by Southern blot analysis. This allele was found in type I (Jewish and non-Jewish), type II, and type III Gaucher patients. These findings led us to conclude that the patient suffering from type II disease (denoted GM1260) carried both mutations described above. Any one of the amino acid changes described reduces the glucocerebrosidase activity as tested by transfection of COS cells with expression vectors harboring the mutated cDNAs. The base changes in the two mutated cDNAs do not affect the electrophoretic mobility of the corresponding polypeptides on an SDS polyacrylamide gel.  相似文献   

11.
We have localized the PvuII polymorphism of the glucocerebrosidase gene complex to intron 6 of the active gene. Using the polymerase chain reaction (PCR) to amplify intron 6 of DNA samples from Pv1.1-/Pv1.1+ individuals, we defined the mutation causing this polymorphism as a G----A single-base substitution at position 3931 of the active gene. By analyzing 54 unrelated Gaucher patients we show strong linkage disequilibrium between the Pv1.1- genotype and the common Jewish mutation 1226 causing the adult type of this disease. Gaucher disease patients heterozygous for the 1226 allele and one unidentified allele (1226/?), particularly those of Jewish ancestry, were predominantly of the Pv1.1-/PV1.1+ genotype. This suggests that one of the unknown alleles may be relatively common and linked to the Pv1.1+ genotype.  相似文献   

12.
We have developed rapid semiautomated fluorogenic TaqMan assays for the three common Jewish mutations that occur in Tay-Sachs disease, the TATC 4-bp insertion in exon 11 (1,278insTATC), the IVS 12 + 1G --> C, splice site mutation in intron 12 (1421 + 1 G --> C), and the G --> A change at the 3' end of exon 7 (G269S), as well as for a non-Jewish mutation, IVS9 + I G --> A, believed to be prevalent in patients of Celtic descent. The TaqMan assays are designed to run on the ABI SDS 7700 sequence detection system, using allele-specific probes that carry a reporter dye at the 5' end and a quencher dye at the 3' end. Using a 96-well format, all four assays can be performed simultaneously on the same plate, with real-time fluorescence detection or just an end-point plate read. DNA samples from 78 patients identified as carriers by biochemical screening and genotyped by conventional techniques were used to assess the accuracy and efficiency of the probes in allelic discrimination assays. There were no discrepancies noted between previously assigned genotypes and the results obtained by application of this methodology.  相似文献   

13.
Carrier frequencies for the allele(s) causing Sandhoff disease have been estimated for the U.S. Jewish and non-Jewish populations. The estimates have been made directly, with data from 22,043 Jewish and 32,342 non-Jewish individuals measured for total serum hexosaminidase activity and the heat-labile fraction. These values have been shown to identify potential carriers of the Sandhoff allele(s) with 95% sensitivity. Subsequent leukocyte assays of total hexosaminidase activity and the heat-labile fraction in those identified in serum tests have been shown to provide a much finer discrimination between those who carry the allele(s) and those who do not. Results from such assays were used to generate these carrier frequency estimates. Carrier frequency estimates have also been made indirectly from Sandhoff disease incidence data collected during the period 1979-84. These estimates are in agreement with data for the Jewish population under analysis, but in the non-Jewish population the estimate derived from data on screened individuals is greater than the estimate derived from incidence figures. The possible causes for such a difference are discussed. In a study of non-Jewish individuals each of whose grandparents derives from a single country of origin, the distribution of countries among Sandhoff disease carriers differs significantly from that in the non-Jewish sample under analysis, indicating possible ethnic groups with increased or decreased carrier frequencies. These analyses suggest an increased Sandhoff disease carrier frequency among Mexican and Central-American populations and a decreased carrier frequency among non-Jewish German populations.  相似文献   

14.
The characterization of mutations in Japanese patients with lipidosis, particularly in metachromatic leukodystrophy (MLD) and Gaucher disease has been studied in detail. Metachromatic leukodystrophy is characterized by an accumulation of sulfatide in nervous tissues and kidney due to a deficiency of arylsulfatase A (ASA). We analyzed the presence of three known mutant arylsulfatase A alleles in Japanese patients with MLD. Among 10 patients of Japanese patients with MLD, we found that allele 445A mutation has moderately high incidence and also homozygosity of this mutation results in the late infantile form. Allele 2381T was not found in Japanese patients. Furthermore, we found novel mutation which is G- to A mutation at the 1070 nucleotide of the ASA gene (designated 1070 A) in Japanese patients with juvenile onset. This mutation results in a amino acid substitution of Gly245 by Arg and found in heterozygote form. Our studies of molecular analysis in 10 Japanese patients with MLD indicate that Japanese MLD patients have unique characteristics of ASA mutations compared with those of Caucasian patients. On the other hand, Gaucher disease is the most prevalent sphingolipidosis, characterized by an accumulation of glucocerebroside in macrophage derived cells due to a deficiency of lysosomal hydrolase glucocerebrosidase. To study the molecular basis of Gaucher disease in Japanese patients, we analyzed the presence of the two known mutations (6433C and 3548A) in the glucocerebrosidase gene of 15 patients with Gaucher disease. We found that the 6433C and 3548A mutations occur in all subtypes of Japanese patients with Gaucher disease. Most frequent mutations among them was the 6433C mutation, 40% of 30 chromosomes, whereas the novel mutation of the 3548A found in Japanese patients with neuronopathic Gaucher disease was found in 20% (6 out of 30 chromosomes). The characteristics of these mutations in Japanese patients with Gaucher disease is different from those of Caucasian populations reported previously.  相似文献   

15.
Samples from five Jewish and six non-Jewish populations were compared in terms of the frequencies of 19 dental morphological variables. All but one of the samples came from Europe, North Africa, or the Middle East. Nine were from contemporary populations, and two were skeletal. Of the skeletal groups, one was Jewish, excavated on Mount Zion, Jerusalem, and dated at around 3,000 years old; and the other non-Jewish, excavated on the east coast of Australia, and dated at between 1,000 and 200 years old. Assessment of affinity between the different groups was based on smallest space analysis and cluster analysis. The results demonstrated relative proximity of the Jewish groups (with one exception), despite the fact that they came from a wide geographical area. In particular, the sample from Mount Zion showed greater affinity with three of the four living Jewish populations than with most non-Jewish groups. The skeletal Australian sample formed a cluster of its own, distinct from all the other groups. For six of the groups, the relationships based on tooth morphology showed good correspondence with known relationships based on single locus polymorphisms. The similarity of the Jewish groups to each other in terms of both tooth morphology and single locus polymorphisms was of special interest, since differences in other morphological and anthropometric characteristics, thought to be the result of selection, are known to exist between the Jewish populations.  相似文献   

16.
Acid beta-glucosidase (GCase) is a 497-amino acid, membrane-associated lysosomal exo-beta-glucosidase whose defective activity leads to the Gaucher disease phenotypes. To move toward a structure/function map for disease mutations, 52 selected single amino acid substitutions were introduced into GCase, expressed in an insect cell system, purified, and characterized for basic kinetic, stability, and activator response properties. The variant GCases from Gaucher disease patients and selected variant GCases from the mouse had decreased relative k(cat) and differential effects on active site binding and/or attachment of mechanism-based covalent (conduritol B epoxide) or reversible (deoxynojirimycin derivatives) inhibitors. A defect in negatively charged phospholipid activation was present in the majority of variant GCases but was increased in two, N370S and V394L. Deficits in saposin C enhancement of k(cat) were present in variant GCases involving residues 48-122, whereas approximately 2-fold increases were obtained with the L264I GCase. About 50% of variant GCases each had wild-type or increased sensitivity to in vitro cathepsin D digestion. Mapping of these properties onto the crystal structures of GCase indicated wide dispersion of functional properties that can affect catalytic function and stability. Site-directed mutagenesis of cysteine residues showed that the disulfide bonds, Cys(4)-Cys(16) and Cys(18)-Cys(23), and a free Cys(342) were essential for activity; the free Cys(126) and Cys(248) were not. Relative k(cat) was highly sensitive to a His substitution at Arg(496) but not at Arg(495). These studies and high phylogenetic conservation indicate localized and general structural effects of Gaucher disease mutations that were not obvious from the nature of the amino acid substitution, including those predicted to be nondisruptive (e.g. Val --> Leu). These results provide initial studies for the engineering of variant GCases and, potentially, molecular chaperones for therapeutic use.  相似文献   

17.
The molecular diagnostics of 27 from 26 Ukrainian families has been performed. The common mutations in GBA gene (N370S, L444P and 84GG) accounted for up to 58% of all cases: mutation N370S was detected in 42.3% alleles, mutation L444P was observed in 15.4% alleles and mutation 84GG was not found at all. The other mutations were: P178S, W184R and Rec Nci I (in compounds with N370S) in the patients with nonneuronopathic form of Gaucher disease, and the genotypes G377S/c 999G --> A and D409H/R120W/G202R were detected in patients with chronic neuronopathic form of Gaucher disease. The data analysis of the genotype and disease progression in the patients allows confirming the known genotype-phenotype correlation.  相似文献   

18.
Bloom syndrome (BS) is more frequent in the Ashkenazic Jewish population than in any other. There the predominant mutation, referred to as "blmAsh," is a 6-bp deletion and 7-bp insertion at nucleotide position 2281 in the BLM cDNA. Using a convenient PCR assay, we have identified blmAsh on 58 of 60 chromosomes transmitted by Ashkenazic parents to persons with BS. In contrast, in 91 unrelated non-Ashkenazic persons with BS whom we examined, blmAsh was identified only in 5, these coming from Spanish-speaking Christian families from the southwestern United States, Mexico, or El Salvador. These data, along with haplotype analyses, show that blmAsh was independently established through a founder effect in Ashkenazic Jews and in immigrants to formerly Spanish colonies. This striking observation underscores the complexity of Jewish history and demonstrates the importance of migration and genetic drift in the formation of human populations.  相似文献   

19.
The molecular basis of more than 25 genetic diseases has been described in Ashkenazi Jewish populations. Most of these diseases are characterized by one or two major founder mutations that are present in the Ashkenazi population at elevated frequencies. One explanation for this preponderance of recessive diseases is accentuated genetic drift resulting from a series of dispersals to and within Europe, endogamy, and/or recent rapid population growth. However, a clear picture of the manner in which neutral genetic variation has been affected by such a demographic history has not yet emerged. We have examined a set of 32 binary markers (single nucleotide polymorphisms; SNPs) and 10 microsatellites on the non-recombining portion of the Y chromosome (NRY) to investigate the ways in which patterns of variation differ between Ashkenazi Jewish and their non-Jewish host populations in Europe. This set of SNPs defines a total of 20 NRY haplogroups in these populations, at least four of which are likely to have been part of the ancestral Ashkenazi gene pool in the Near East, and at least three of which may have introgressed to some degree into Ashkenazi populations after their dispersal to Europe. It is striking that whereas Ashkenazi populations are genetically more diverse at both the SNP and STR level compared with their European non-Jewish counterparts, they have greatly reduced within-haplogroup STR variability, especially in those founder haplogroups that migrated from the Near East. This contrasting pattern of diversity in Ashkenazi populations is evidence for a reduction in male effective population size, possibly resulting from a series of founder events and high rates of endogamy within Europe. This reduced effective population size may explain the high incidence of founder disease mutations despite overall high levels of NRY diversity.Electronic Supplementary Material Supplementary material is available in the online version of this article at D.M. Behar and D. Garrigan contributed equally to this workElectronic database information: URLs for the data in this article are as follows:ARLEQUIN,  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号