首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The EnzymeIIbgl of the phosphoenolpyruvate- (PEP-) dependent phosphotransferase system catalyses the uptake and concomitant phosphorylation of beta-glucosides by Escherichia coli; it is specified by the gene bglC. The nucleotide sequence of a 3.6 kb HindIII restriction fragment spanning bglC, cloned on a plasmid, was determined. DNA analysis strongly suggests that the published order of this and other genes involved in beta-glucoside utilization, bgl C, S, B, is incorrect, and that the regulatory gene bglS may be located upstream of the structural genes bglC and bglB. From the deduced amino acid sequence it is predicted that the membrane protein specified by bglC consists of 625 amino acid residues (66.48 kDa). The protein has the hydropathic profile expected of an integral membrane protein (average hydropathy = 0.62). Comparisons between the amino acid sequences deduced for the EnzymeIIbgl and for the mannitol-specific EnzymeIImtl show that these proteins are related, and a little direct homology is apparent. A 2.3 kb AluI fragment spanning bglC was subcloned into an expression vector which carries the lambda PL promoter and then transformed into a host strain which produces thermolabile cI857 repressor and the anti-terminator N; thermoinduction resulted in the overproduction of a membrane protein and the appearance of Bgl activity.  相似文献   

4.
Escherichia coli K12 does not metabolize beta-glucosides such as arbutin and salicin because of lack of expression of the bglBSRC operon, which contains structural genes for transport (bglC) and hydrolysis (bglB) of phospho-beta-glucosides. Mutants carrying lesions in the cis-acting regulatory site bglR metabolize beta-glucosides as a consequence of expression of this cryptic operon (Prasad and Schaefler 1974). We isolated mutations promoting beta-glucoside metabolism that were unlinked to bglR; some of these mutations were shown to be amber. All of them were mapped at 27 min on the E. coli K12 linkage map and appeared to define a single gene, for which we propose the designation bglY. Utilization of beta-glucosides in bglY mutants appeared to be a consequence of expression of the bglBSRC operon, since bglB bglR and bglB bglY double mutants had the same phenotype. All bglY mutations analyzed were recessive to the wild-type bglY+ allele. Phospho-beta-glucosidase B and beta-glucoside transport activities are inducible in bglY mutants, as they are in bglR mutants. Metabolism of beta-glucosides in both bglR and bglY mutants required cyclic AMP. We propose that bglY encodes a protein acting as a repressor of the bglBSRC operon, active in both the presence and absence of beta-glucosides, whose recognition site would be within the bglR locus.  相似文献   

5.
6.
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.  相似文献   

7.
D Sun  P Setlow 《Journal of bacteriology》1993,175(9):2501-2506
Previous work has shown that expression of the Bacillus subtilis ans operon which codes for L-asparaginase and L-aspartase, is both increased and made insensitive to repression by NH4+ by the aspH1 mutation. In current work, the gene in which the aspH1 mutation resides has been identified and sequenced; this gene, termed ansR, is immediately upstream of, but transcribed in the opposite direction from, the ans operon. The promoter region of ansR contains -10 and -35 sequences similar to those recognized by RNA polymerase containing the major vegetative-cell sigma factor sigma A, and ansR appears to be monocistronic. The ansR gene codes for a 116-residue protein, but the aspH1 mutant allele has an additional guanine residue at codon 55, resulting in generation of a truncated polypeptide of only 58 residues. Insertional inactivation of ansR resulted in a phenotype identical to that of the aspH1 mutant. The predicted amino acid sequence of the ansR gene product (AnsR) was homologous to that of the repressor of B. subtilis prophage PBSX, and a helix-turn-helix motif, characteristic of many DNA-binding proteins, was present in the AnsR amino-terminal region. These results suggest that ansR codes for a repressor of the ans operon.  相似文献   

8.
Two copies of IS1675, a novel lactococcal insertion element from the IS4 family, are present on a 70-kb plasmid, where they frame the lantibiotic lacticin 481 operon. The whole structure could be a composite transposon designated Tn5721. This study shows that the lacticin 481 operon does not include any regulatory gene and provides a new example of a transposon-associated bacteriocin determinant. We identified five other IS1675 copies not associated with the lacticin 481 operon. The conservation of IS1675 flanking sequences suggested a 24-bp target site.  相似文献   

9.
Although the mechanisms for regulation of ribosomal protein gene expression have been established for gram-negative bacteria such as Escherichia coli, the regulation of these genes in gram-positive bacteria such as Bacillus subtilis has not yet been characterized. In this study, the B. subtilis rpsD gene, encoding ribosomal protein S4, was found to be subject to autogenous control. In E. coli, rpsD is located in the alpha operon, and S4 acts as the translational regulator for alpha operon expression, binding to a target site in the alpha operon mRNA. The target site for repression of B. subtilis rpsD by protein S4 was localized by deletion and oligonucleotide-directed mutagenesis to the leader region of the monocistronic rpsD gene. The B. subtilis rpsD leader exhibits little sequence homology to the E. coli alpha operon leader but may be able to form a pseudoknotlike structure similar to that found in E. coli.  相似文献   

10.
The gene coding for Bacillus subtilis RNA polymerase major sigma 43, rpoD, was cloned together with its neighboring genes in a 7 kb EcoRI fragment. The complete nucleotide sequence of a 5 kb fragment including the entire rpoD gene revealed the presence of two other genes preceding rpoD in the order P23-dnaE-rpoD. The dnaE codes for DNA primase while the function of P23 remains unknown. The three genes reside in an operon that is similar in organization to the E. coli RNA polymerase major sigma 70 operon, which is composed of genes encoding small ribosome protein S21 (rpsU), DNA primase (dnaG), and RNA polymerase sigma 70 (rpoD). There is a relatively high degree of base and amino acid homology between the DNA primase and sigma genes. The most significant differences between the two operons are observed in the molecular size of the first genes (P23 and rpsU), the complete lack of amino acid homology between P23 and S21, the molecular weights of the two rpoD genes, the size of the intercistronic region between the first two genes, and the regulatory elements of the operon.  相似文献   

11.
12.
The transformation of tyrR strains of Escherichia coli with multicopy plasmids which carry the tyrosine operon gave rise to modified plasmids with either insertions or deletions. The effect of each of these insertions or deletions was to decrease the level of expression of this operon. It is proposed that plasmid instability arose as a direct consequence of the metabolic effects of an overproduction of the enzymes coded for by the tyrosine operon. The results have significant implications for the cloning of genes that are repressed by the product of a regulatory gene. Since the predominant plasmid modification observed was the insertion of an IS1 element near the regulatory region of the tyrosine operon, the results also suggest a role for IS1 elements in the regulation of gene expression.  相似文献   

13.
We isolated the gene encoding the alpha subunit of Bacillus subtilis RNA polymerase from a lambda gt11 expression vector library by using anti-alpha antibody as a probe. Four unique clones were isolated, one carrying a lacZ-alpha gene fusion and three carrying the entire alpha coding region together with additional sequences upstream. The identity of the cloned alpha gene was confirmed by the size and immunological reactivity of its product expressed in Escherichia coli. Further, a partial DNA sequence found the predicted NH2 terminus of alpha homologous with E. coli alpha. By plasmid integration and PBS1 transduction, we mapped alpha near rpsE and within the major ribosomal protein gene cluster on the B. subtilis chromosome. Additional DNA sequencing identified rpsM (encoding S13) and rpsK (encoding S11) upstream of alpha, followed by a 180-base-pair intercistronic region that may contain two alpha promoters. Although the organization of the alpha region resembles that of the alpha operon of E. coli, the putative promoters and absence of rpsD (encoding S4) immediately preceding the B. subtilis alpha gene suggest a different regulation.  相似文献   

14.
15.
The cydABCD operon of Bacillus subtilis encodes products required for the production of cytochrome bd oxidase. Previous work has shown that one regulatory protein, YdiH (Rex), is involved in the repression of this operon. The work reported here confirms the role of Rex in the negative regulation of the cydABCD operon. Two additional regulatory proteins for the cydABCD operon were identified, namely, ResD, a response regulator involved in the regulation of respiration genes, and CcpA, the carbon catabolite regulator protein. ResD, but not ResE, was required for full expression of the cydA promoter in vivo. ResD binding to the cydA promoter between positions -58 and -107, a region which includes ResD consensus binding sequences, was not enhanced by phosphorylation. A ccpA mutant had increased expression from the full-length cydA promoter during stationary growth compared to the wild-type strain. Maximal expression in a ccpA mutant was observed from a 3'-deleted cydA promoter fusion that lacked the Rex binding region, suggesting that the effect of the two repressors, Rex and CcpA, was cumulative. CcpA binds directly to the cydA promoter, protecting the region from positions -4 to -33, which contains sequences similar to the CcpA consensus binding sequence, the cre box. CcpA binding was enhanced upon addition of glucose-6-phosphate, a putative cofactor for CcpA. Mutation of a conserved residue in the cre box reduced CcpA binding 10-fold in vitro and increased cydA expression in vivo. Thus, CcpA and ResD, along with the previously identified cydA regulator Rex (YdiH), affect the expression of the cydABCD operon. Low-level induction of the cydA promoter was observed in vivo in the absence of its regulatory proteins, Rex, CcpA, and ResD. This complex regulation suggests that the cydA promoter is tightly regulated to allow its expression only at the appropriate time and under the appropriate conditions.  相似文献   

16.
17.
A segment of Bacillus subtilis chromosomal DNA homologous to the Escherichia coli spc ribosomal protein operon was isolated using cloned E. coli rplE (L5) DNA as a hybridization probe. DNA sequence analysis of the B. subtilis cloned DNA indicated a high degree of conservation of spc operon ribosomal protein genes between B. subtilis and E. coli. This fragment contains DNA homologous to the promoter-proximal region of the spc operon, including coding sequences for ribosomal proteins L14, L24, L5, S14, and part of S8; the organization of B. subtilis genes in this region is identical to that found in E. coli. A region homologous to the E. coli L16, L29 and S17 genes, the last genes of the S10 operon, was located upstream from the gene for L14, the first gene in the spc operon. Although the ribosomal protein coding sequences showed 40-60% amino acid identity with E. coli sequences, we failed to find sequences which would form a structure resembling the E. coli target site for the S8 translational repressor, located near the beginning of the L5 coding region in E. coli, in this region or elsewhere in the B. subtilis spc DNA.  相似文献   

18.
19.
Analysis of the gluconate (gnt) operon of Bacillus subtilis   总被引:7,自引:0,他引:7  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号