首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The solution NMR structure is reported for Ca(2+)-loaded S100B bound to a 12-residue peptide, TRTK-12, from the actin capping protein CapZ (alpha1 or alpha2 subunit, residues 265-276: TRTKIDWNKILS). This peptide was discovered by Dimlich and co-workers by screening a bacteriophage random peptide display library, and it matches exactly the consensus S100B binding sequence ((K/R)(L/I)XWXXIL). As with other S100B target proteins, a calcium-dependent conformational change in S100B is required for TRTK-12 binding. The TRTK-12 peptide is an amphipathic helix (residues W7 to S12) in the S100B-TRTK complex, and helix 4 of S100B is extended by three or four residues upon peptide binding. However, helical TRTK-12 in the S100B-peptide complex is uniquely oriented when compared to the three-dimensional structures of other S100-peptide complexes. The three-dimensional structure of the S100B-TRTK peptide complex illustrates that residues in the S100B binding consensus sequence (K4, I5, W7, I10, L11) are all involved in the S100B-peptide interface, which can explain its orientation in the S100B binding pocket and its relatively high binding affinity. A comparison of the S100B-TRTK peptide structure to the structures of apo- and Ca(2+)-bound S100B illustrates that the binding site of TRTK-12 is buried in apo-S100B, but is exposed in Ca(2+)-bound S100B as necessary to bind the TRTK-12 peptide.  相似文献   

2.
The Ca(2+)-binding S100A1 protein displays a specific and high expression level in the human myocardium and is considered to be an important regulator of heart contractility. Diminished protein levels detected in dilated cardiomyopathy possibly contribute to impaired Ca(2+) handling and contractility in heart failure. To elucidate the S100A1 signaling pathway in the human heart, we searched for S100A1 target proteins by applying S100A1-specific affinity chromatography and immunoprecipitation techniques. We detected the formation of a Ca(2+)-dependent complex of S100A1 with SERCA2a and PLB in the human myocardium. Using confocal laser scanning microscopy, we showed that all three proteins co-localize at the level of the SR in primary mouse cardiomyocytes and confirmed these results by immunoelectron microscopy in human biopsies. Our results support a regulatory role of S100A1 in the contraction-relaxation cycle in the human heart.  相似文献   

3.
Wang J  Cai Y  Xu H  Zhao J  Xu X  Han YL  Xu ZX  Chen BS  Hu H  Wu M  Wang MR 《Cell research》2004,14(1):46-53
  相似文献   

4.
Several members of the S100 family of Ca(2+) binding proteins are at present known to be secreted and to have extracellular activities. We have investigated the neurite inducing potential of extracellularly added S100A12. Human recombinant S100A12 was found to dramatically induce neuritogenesis of hippocampal cells isolated from 17 to 19 days old rat embryos. The response to S100A12 was dependent on the dose in a bell-shaped manner. A 10-fold increase in neurite outgrowth was observed upon treatment with S100A12 in concentrations between 0.1 and 2.0 microM already after 24 h. Exposure to S100A12 for only 15 min was enough to induce neuritogenesis when measured after 24 h, but to obtain a maximal response, S100A12 had to be present in the culture for at least 4 h. The response to S100A12 was abolished by inhibitors of phospholipase C (PLC), protein kinase C (PKC), Ca(2+) flux, Ca(2+)/calmodulin dependent kinase II (CaMKII) or mitogen-activated protein kinase kinase (MEK). Therefore, we suggest that extracellular S100A12 triggers intracellular signal transduction in neurons, involving the classical mitogen-activated protein (MAP) kinase pathway and a phospholipase C-generated second messenger pathway leading to an increase in intracellular Ca(2+) and activation of PKC, ultimately resulting in neuronal differentiation.  相似文献   

5.
A bovine neutrophil protein termed p23 because of an apparent molecular mass of 23 kDa in SDS-PAGE is present in large amounts both in a soluble form in the cytosolic fraction of bovine neutrophil homogenates and associated to the cytoskeleton. P23 is accompanied during the first steps of the purification procedure by a smaller size protein termed p7 on the basis of a rate of migration in SDS-PAGE corresponding to a 7-kDa protein [Stasia, M. J., Dianoux, A. C., & Vignais, P. V. (1989) Biochemistry 28, 9659-9667]. The two proteins, p23 and p7, have been purified to homogeneity by an improved procedure consisting of two chromatographic steps. The electrospray mass spectrometry technique applied to p23 and p7 indicated molecular masses close to 17 and 10 kDa, respectively, significantly different from the masses derived by SDS-PAGE. Bovine neutrophil p23 and p7 presented large primary structure homologies with two human proteins, MRP14 and MRP8, which are expressed in large amounts in macrophages under conditions of chronic inflammation. In addition, p23 and p7 cross-reacted with monoclonal antibodies specific of MRP14 and MRP8. Bovine p23 and p7 bound Ca2+, and their amino acid sequences contained two Ca(2+)-binding domains per protein, largely identical to those of human MRP14 and MRP8. Bovine p23 and p7 associated together to form a heterodimeric complex, which largely escaped attack by trypsin, whereas the isolated p23 and p7 components were readily digested. These features are typical of Ca(2+)-binding proteins belonging to the S100 family.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
S100A1 is an EF-hand-containing Ca(2+)-binding protein that undergoes a conformational change upon binding calcium as is necessary to interact with protein targets and initiate a biological response. To better understand how calcium influences the structure and function of S100A1, the three-dimensional structure of calcium-bound S100A1 was determined by multidimensional NMR spectroscopy and compared to the previously determined structure of apo. In total, 3354 nuclear Overhauser effect-derived distance constraints, 240 dihedral constraints, 160 hydrogen bond constraints, and 362 residual dipolar coupling restraints derived from a series of two-dimensional, three-dimensional, and four-dimensional NMR experiments were used in its structure determination (>21 constraints per residue). As with other dimeric S100 proteins, S100A1 is a symmetric homodimer with helices 1, 1', 4, and 4' associating into an X-type four-helix bundle at the dimer interface. Within each subunit there are four alpha-helices and a short antiparallel beta-sheet typical of two helix-loop-helix EF-hand calcium-binding domains. The addition of calcium did not change the interhelical angle of helices 1 and 2 in the pseudo EF-hand significantly; however, there was a large reorientation of helix 3 in the typical EF-hand. The large conformational change exposes a hydrophobic cleft, defined by residues in the hinge region, the C terminus, and regions of helix 3, which are important for the interaction between S100A1 and a peptide (TRTK-12) derived from the actin-capping protein CapZ.  相似文献   

7.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

8.
The S100 protein family is the largest group of calcium-binding protein families, which consists of at least 25 members. S100A13, which is widely expressed in a variety of tissues, is a unique member of the S100 protein family. Previous reports showed that S100A13 might be involved in the stress-induced release of some signal peptide-less proteins (such as FGF-1 and IL-1alpha) and also associated with inflammatory functions. It was also reported that S100A13 is a new angiogenesis marker. Here we report the crystal structure of the Ca(2+)-bound form of S100A13 at 2.0 A resolution. S100A13 is a homodimer with four EF-hand motifs in an asymmetric unit, displaying a folding pattern similar to other S100 members. However, S100A13 has the unique structural feature with all alpha-helices being amphiphilic, which was not found in other members of S100s. We propose that this characteristic structure of S100A13 might be related to its ability to mediate the release of FGF-1 and IL-1alpha.  相似文献   

9.
MRP-8 and -14 are two S100 proteins highly expressed as a complex by neutrophils, and to a lesser extent by monocytes and certain squamous epithelia. However, less is known about the close homologue S100A12. This S100 protein is expressed by neutrophils and here we show that it is also expressed by monocytes, but not lymphocytes. An absence of coimmunoprecipitation of MRP-14 and S100A12 indicates that S100A12 is not associated with the MRP proteins in vivo. When directly compared to MRP-14, S100A12 expression by squamous epithelia is more restricted. In esophagus and psoriatic skin, S100A12 is differentially regulated, like MRP-14, but the expression pattern of the two S100 proteins is quite different.  相似文献   

10.
钙结合蛋白S100A14是S100家族中的新成员,其空间结构与功能尚未阐明。采用服务器PredictProtein对人S100A14进行二级结构预测,利用同源建模法构建S100A14(序列12-102)的空间结构模型,经PROCHECK评估模型的可靠性,并将所构建的单体模型进行分子对接,预测S100A14形成同源二聚体的可能性及模式。结果显示,S100A14与S100A13的蛋白序列一致性最高,其C-端Ca2+结合区存在多个变异,但Cu2+和Zn2+结合位点保守存在;helix I与helix IV较S100A13延伸长,而helix I、helix II和helix IV与S100A13的四个α螺旋一样具有两亲性的结构特征,并且在S100A13中扮演重要角色的W77在S100A14的helix IV(W85)中也保守存在。空间结构上,S100A14与S100A13具极大相似性;分子对接显示S100A14单体间可以通过疏水作用力形成"X-型螺旋束"同源二聚体。这些结构特征的分析将为S100A14的功能研究提供重要线索。  相似文献   

11.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

12.
Changes in cytosolic calcium concentrations regulate a wide variety of cellular processes, and calcium-binding proteins are the key molecules in signal transduction, differentiation, and cell cycle control. S100A12, a recently described member of the S100 protein family, has been shown to be coexpressed in granulocytes and monocytes together with two other S100 proteins, MRP8 (S100A8) and MRP14 (S100A9), and a functional relationship between these three S100 proteins has been suggested. Using Western blotting, calcium overlays, intracellular flow cytometry, and cytospin preparations, we demonstrate that S100A12 expression in leukocytes is specifically restricted to granulocytes and that S100A12 represents one of the major calcium-binding proteins in these cells. S100A12, MRP8, and MRP14 translocate simultaneously from the cytosol to cytoskeletal and membrane structures in a calcium-dependent manner. However, no evidence for direct protein-protein interactions of S100A12 with either MRP8 or MRP14 or the heterodimer was found by chemical cross-linking, density gradient centrifugation, mass spectrometric measurements, or yeast two hybrid detection. Thus, S100A12 acts individually during calcium-dependent signaling, independent of MRP8, MRP14, and the heterodimer MRP8/MRP14. This granulocyte-specific signal transduction pathway may offer attractive targets for therapeutic intervention with exaggerated granulocyte activity in pathological states.  相似文献   

13.
S100A4 takes part in control of tumour cell migration and contributes to metastatic spread in in vivo models. In the active dimeric Ca(2+)-bound state it interacts with multiple intracellular targets. Conversely, oligomeric forms of S100A4 are linked with the extracellular function of this protein. We report the 1.5A X-ray crystal structure of Ca(2+)-bound S100A4 and use it to identify the residues involved in target recognition and to derive a model of the oligomeric state. We applied stopped-flow analysis of tyrosine fluorescence to derive kinetics of S100A4 activation by Ca(2+) (k(on)=3.5 microM(-1)s(-1), k(off)=20s(-1)).  相似文献   

14.
Intra- and Interchain Disulfide Bond Generation in S100b Protein   总被引:1,自引:0,他引:1  
Disulfide-bridged S100b protein formation, aircatalyzed and induced by thiol/disulfide exchange, was studied under various ionic conditions. As native, physiological disulfide-bridged proteins are obtained easily from their reduced counterparts under appropriate redox conditions, this work was performed to determine whether this was the case for disulfide-bridged S100b proteins, reported to have neurite extension activity. In nondenaturating native medium, no disulfide-bridged species could be generated from reduced proteins in any of the ion-induced conformations tested (no ions, Ca2+, Zn2+, or K+) under widely different redox conditions. Only mixed disulfides accumulated, in certain cases. In contrast, intrasubunit monomeric and intersubunit dimeric disulfide-bridged species were readily and efficiently generated under denaturating conditions. A brief characterization of these oxidized species suggested that they differed widely in structure from their reduced counterparts and that they probably did not bind Ca2+. Taken together, these data question the physiological relevance of these disulfide-bridged S100b protein species.  相似文献   

15.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

16.
S100 proteins, a multigenic family of calcium-binding proteins, have been linked to human pathologies in recent years. Deregulated expression of S100 proteins, including S100A8 and S100A9, was reported in association with neoplastic disorders. In a previous study, we identified enhanced expression of S100A8 and S100A9 in human prostate cancer. To investigate potential functional implications of S100A8 and S100A9 in prostate cancer, we examined the influence of over-expressed and of purified recombinant S100A8 and S100A9 proteins in different prostate epithelial cell lines. S100A8 and S100A9 were secreted by prostate cancer cells, a finding which prompted us to analyze a possible function as extracellular ligands. S100A8/A9 induced the activation of NF-kappaB and an increased phosphorylation of p38 and p44/42 MAP kinases. In addition, extracellular S100A8/A9 stimulated migration of benign prostatic cells in vitro. Furthermore, in immunofluorescence experiments, we found a strong speckled co-localization of intracellular S100A8/A9 with RAGE after stimulating cells with recombinant S100A8/A9 protein or by increasing cytosolic Ca2+ levels. In summary, our findings show that S100A8 and S100A9 are linked to the activation of important features of prostate cancer cells.  相似文献   

17.
S100A3 is a unique member of the EF-hand superfamily of Ca(2+)-binding proteins. It binds Ca(2+) with poor affinity (K(d) = 4-35 mm) but Zn(2+) with exceptionally high affinity (K(d) = 4 nm). This high affinity for Zn(2+) is attributed to the unusual high Cys content of S100A3. The protein is highly expressed in fast proliferating hair root cells and astrocytoma pointing toward a function in cell cycle control. We determined the crystal structure of the protein at 1.7 A. The high resolution structure revealed a large distortion of the C-terminal canonical EF-hand, which most likely abolishes Ca(2+) binding. The crystal structure of S100A3 allows the prediction of one putative Zn(2+) binding site in the C terminus of each subunit of S100A3 involving Cys and His residues in the coordination of the metal ion. Zn(2+) binding induces a large conformational change in S100A3 perturbing the hydrophobic interface between two S100A3 subunits, as shown by size exclusion chromatography and CD spectroscopy.  相似文献   

18.
Summary The functional importance of members of the S100 Ca2+-binding protein family is recently emerging. A variety of activities, several of whcih are apparently opposing, are attributed to S100A8, a protein implicated in embryogenesis, growth, differentiation, and immune and inflammatory processes. Murine (m) S100A8 was initially described as a chemoattractant (CP-10) for myeloid cells. It is coordinately expressed with mS100A9 (MRP14) in neutrophils and the non-covalent heterodimer is presumed to be the functional intracellular species. The extracellular chemotactic activity of mS100A8, however, is not dependent on mS100A9 and occurs at concentrations (10−13-10−11 M) at which the non-covalent heterodimer would probably dissociate. This review focuses on the structure and post-translational modifications of mS100A8/A9 and their effects on function, particularly chemotaxis.  相似文献   

19.
The functional importance of members of the S100 Ca2+-binding protein family is recently emerging. A variety of activities, several of which are apparently opposing, are attributed to S100A8, a protein implicated in embryogenesis, growth, differentiation, and immune and inflammatory processes. Murine (m) S100A8 was initially described as a chemoattractant (CP-10) for myeloid cells. It is coordinately expressed with mS100A9 (MRP14) in neutrophils and the non-covalent heterodimer is presumed to be the functional intracellular species. The extracellular chemotactic activity of mS100A8, however, is not dependent on mS100A9 and occurs at concentrations (10-13–10-11 M) at which the non-covalent heterodimer would probably dissociate. This review focuses on the structure and post-translational modifications of mS100A8/A9 and their effects on function, particularly chemotaxis.  相似文献   

20.
In heart and skeletal muscle an S100 protein family member, S100A1, binds to the ryanodine receptor (RyR) and promotes Ca(2+) release. Using competition binding assays, we further characterized this system in skeletal muscle and showed that Ca(2+)-S100A1 competes with Ca(2+)-calmodulin (CaM) for the same binding site on RyR1. In addition, the NMR structure was determined for Ca(2+)-S100A1 bound to a peptide derived from this CaM/S100A1 binding domain, a region conserved in RyR1 and RyR2 and termed RyRP12 (residues 3616-3627 in human RyR1). Examination of the S100A1-RyRP12 complex revealed residues of the helical RyRP12 peptide (Lys-3616, Trp-3620, Lys-3622, Leu-3623, Leu-3624, and Lys-3626) that are involved in favorable hydrophobic and electrostatic interactions with Ca(2+)-S100A1. These same residues were shown previously to be important for RyR1 binding to Ca(2+)-CaM. A model for regulating muscle contraction is presented in which Ca(2+)-S100A1 and Ca(2+)-CaM compete directly for the same binding site on the ryanodine receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号