首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Toc75 is postulated to form the protein translocation channel in the chloroplastic outer envelope membrane. Proteins homologous to Toc75 are present in a wide range of organisms, with the closest homologs occurring in cyanobacteria. Therefore, an endosymbiotic origin of Toc75 has been postulated. Recently, a gene encoding a paralog to Toc75 was identified in Arabidopsis and its product was named atToc75-V. In the present study, we characterized this new Toc75 paralog, and investigated extensively the relationships among Toc75 homologs from higher plants and bacteria in order to gain insights into the evolutionary origin of the chloroplastic protein translocation channel. First, we found that the native molecular weight of atToc75-V is 80 kDa and renamed it (AtOEP80) Arabidopsis thalianaouter envelope protein of 80 kDa. Second, we found that AtOEP80 and Toc75 utilize different mechanisms for their targeting to the chloroplastic envelope. Toc75 is directed with a cleavable bipartite transit peptide partly via the general import pathway, whereas AtOEP80 contains the targeting information within its mature sequence, and its targeting is independent of the general pathway. Third, we undertook phylogenetic analyses of Toc75 homologs from various organisms, and found that Toc75 and OEP80 represent two independent gene families that are most likely derived from cyanobacterial sequences. Our results suggest that Toc75 and OEP80 diverged early in the evolution of plastids from their common ancestor with modern cyanobacteria.  相似文献   

2.
Toc75 is an outer envelope membrane protein of chloroplasts. It is unusual among the outer membrane proteins in that its precursor form has a bipartite transit peptide. The N-terminal portion of the Toc75 transit peptide is sufficient to target the protein to the stromal space of chloroplasts. We prepared a 45 amino-acid peptide containing the stromal targeting domain of the Toc75 transit peptide in Escherichia coli, using the intein-mediated system, and purified it by reverse-phase HPLC. Its identity was confirmed by N-terminal amino-acid sequencing and matrix assisted laser desorption ionization mass spectrometry. In monolayer experiments, the peptide inserted into the chloroplastic membrane lipids sulfoquinovosyl diacylglycerol and phosphatidylglycerol and into a nonchloroplastic lipid phosphatidylethanolamine. However, it did not insert into other chloroplastic lipids, such as mono- and digalactosyl diacylglycerol, and phosphatidylcholine. Furthermore, the peptide significantly inhibited binding of radiolabeled precursors of Toc75 and the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase to intact chloroplasts as effectively as did a bacterially produced precursor of the small subunit of 1,5-bisphosphate carboxylase/oxygenase. The peptide also inhibited import of radiolabeled precursors into isolated chloroplasts, however, to a lesser extent than did nonlabeled precursor of the small subunit of 1,5-bisphosphate carboxylase/oxygenase.  相似文献   

3.
Toc34 is a transmembrane protein located in the outer envelope membrane of chloroplasts and involved in transit peptide recognition. The cytosolic region of Toc34 reveals 34% alpha-helical and 26% beta-strand structure and is stabilized by intramolecular electrostatic interaction. Toc34 binds both chloroplast preproteins and isolated transit peptides in a guanosine triphosphate- (GTP-) dependent mechanism. In this study we demonstrate that the soluble, cytosolic domain of Toc34 (Toc34deltaTM) functions as receptor in vitro and is capable to compete with the import of the preprotein of the small subunit (preSSU) of ribulose-1,5-bisphosphate carboxylase-oxygenase into chloroplasts in a GTP-dependent manner. We have developed a biosensor assay to study the interaction of Toc34deltaTM with purified preproteins and transit peptides. The results are compared with the interactions of both a full-size preprotein and the transit peptide of preSSU with the translocon of the outer envelope of chloroplasts (Toc complex) in situ. Several mutants of the transit peptide of preSSU were evaluated to identify amino acid segments that are specifically recognized by Toc34. We present a model of how Toc34 may recognize the transit peptide and discuss how this interaction may facilitate interaction and translocation of preproteins via the Toc complex in vivo.  相似文献   

4.
Toc75 is a protein translocation channel in the outer envelope membrane of chloroplasts and its presence is essential for the biogenesis of the organelles. Toc75 is the only protein identified so far in the outer membrane of chloroplasts or mitochondria that is synthesized as a larger precursor, preToc75, with a bipartite transit peptide. Its N-terminus targets the protein to the stroma and is removed by the stromal processing peptidase, whereas its C-terminus mediates envelope targeting and is removed by a yet unknown peptidase. Several conserved domains have been identified in the C-terminal portion of the preToc75 transit peptide from six plant species. We evaluated their importance in the biogenesis of Toc75 by means of deletion or site-directed mutagenesis, followed by import experiments using isolated chlroplasts. Among the conserved domains, a polyglycine stretch was found to be necessary for envelope targeting. Substitution of this domain with other stretches of a single amino acid such as alanine caused mistargeting of the protein into the stroma, indicating an important role for this domain. Furthermore, a glutamate at +2 and two alanine residues at -3 and -1 to the second cleavage site were found to be important for processing. A potential mechanism for the biogenesis of Toc75 is discussed.  相似文献   

5.
A Toc75-like protein import channel is abundant in chloroplasts   总被引:9,自引:0,他引:9       下载免费PDF全文
Chloroplasts import post-translationally most of their constituent polypeptides via two distinct translocon units located in the outer and inner envelope. The protein import channel of the translocon of the outer envelope of chloroplasts, Toc75, is the most abundant protein in that membrane. We identify a novel Toc75 homologous protein, atToc75-V, a prominent protein that is clearly localized in the chloroplastic outer envelope. Phylogenetic analysis indicates that Toc75-V is more closely related to its prokaryotic ancestors than to Toc75 from plants. The presence of a second translocation channel suggests that alternative, previously unrecognized import routes into chloroplasts might exist.  相似文献   

6.
Reconstitution of a chloroplast protein import channel.   总被引:17,自引:0,他引:17       下载免费PDF全文
S C Hinnah  K Hill  R Wagner  T Schlicher    J Soll 《The EMBO journal》1997,16(24):7351-7360
The chloroplastic outer envelope protein OEP75 with a molecular weight of 75 kDa probably forms the central pore of the protein import machinery of the outer chloroplastic membrane. Patch-clamp analysis shows that heterologously expressed, purified and reconstituted OEP75 constitutes a voltage-gated ion channel with a unit conductance of Lambda = 145pS. Activation of the OEP75 channel in vitro is completely dependent on the magnitude and direction of the voltage gradient. Therefore, movements of protein charges of parts of OEP75 in the membrane electric field are required either for pore formation or its opening. In the presence of precursor protein from only one side of the bilayer, strong flickering and partial closing of the channel was observed, indicating a specific interaction of the precursor with OEP75. The comparatively low ionic conductance of OEP75 is compatible with a rather narrow aqueous pore (dporeapproximately equal to 8-9 A). Provided that protein and ion translocation occur through the same pore, this implies that the environment of the polypeptide during the transit is mainly hydrophilic and that protein translocation requires almost complete unfolding of the precursor.  相似文献   

7.
The chloroplastic outer envelope protein Toc34 is inserted into the membrane by a COOH-terminal membrane anchor domain in the orientation Ncyto-Cin. The insertion is independent of ATP and a cleavable transit sequence. The cytosolic domain of Toc34 does not influence the insertion process and can be replaced by a different hydrophilic reporter peptide. Inversion of the COOH-terminal, 45-residue segment, including the membrane anchor domain (Toc34Cinv), resulted in an inverted topology of the protein, i.e., Nin-Ccyto. A mutual exchange of the charged amino acid residues NH2- and COOH-proximal of the hydrophobic α-helix indicates that a double-positive charge at the cytosolic side of the transmembrane α-helix is the sole determinant for its topology. When the inverted COOH-terminal segment was fused to the chloroplastic precursor of the ribulose-1,5-bisphosphate carboxylase small subunit (pS34Cinv), it engaged the transit sequence–dependent import pathway. The inverted peptide domain of Toc34 functions as a stop transfer signal and is released out of the outer envelope protein translocation machinery into the lipid phase. Simultaneously, the NH2-terminal part of the hybrid precursor remained engaged in the inner envelope protein translocon, which could be reversed by the removal of ATP, demonstrating that only an energy-dependent force but no further ionic interactions kept the precursor in the import machinery.  相似文献   

8.
The GTPases Toc159 and Toc34 of the translocon of the outer envelope of chloroplasts (TOC) are involved in recognition and transfer of precursor proteins at the cytosolic face of the organelle. Both proteins engage multiple interactions within the translocon during the translocation process, including dimeric states of their G-domains. The units of the Toc34 homodimer are involved in the recognition of the transit peptide representing the translocation signal of precursor proteins. This substrate recognition is part of the regulation of the GTPase cycle of Toc34. The Toc159 monomer and the Toc34 homodimer recognize the transit peptide of the small subunit of Rubisco at the N- and at the C-terminal region, respectively. Analysis of the transit peptide interaction by crosslinking shows that the heterodimer between both G-domains binds pSSU most efficiently. While substrate recognition by Toc34 homodimer was shown to regulate nucleotide exchange, we provide evidence that the high activation energy of the GTPase Toc159 is lowered by substrate recognition. The nucleotide affinity of Toc34G homodimer and Toc159G monomer are distinct, Toc34G homodimer recognizes GDP and Toc159G GTP with highest affinity. Moreover, the analysis of the nucleotide association rates of the monomeric and dimeric receptor units suggests that the heterodimer has an arrangement distinct from the homodimer of Toc34. Based on the biochemical parameters determined we propose a model for the order of events at the cytosolic side of TOC. The molecular processes described by this hypothesis range from transit peptide recognition to perception of the substrate by the translocation channel.  相似文献   

9.
P J Tranel  K Keegstra 《The Plant cell》1996,8(11):2093-2104
OEP75 is an outer envelope membrane component of the chloroplastic protein import apparatus and is synthesized in the cytoplasm as a higher molecular weight precursor (prOEP75). During its own import, prOEP75 is processed first to an intermediate (iOEP75) and subsequently to the mature form (mOEP75). Experiments conducted with stromal extracts indicated that iOEP75 was generated from prOEP75 by the activity of the stromal processing peptidase. The specific processing site was determined and used to divide the prOEP75 transit peptide into N- and C-terminal domains. To determine the targeting functions of the two domains of the transit peptide and of the mature region of prOEP75, we created a deletion mutant construct from prOEP75 and chimeric constructs between domains of prOEP75 and the precursor to a small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Analysis of these constructs by in vitro chloroplastic protein import assays revealed that the transit peptide of prOEP75 is bipartite in that the N- and C-terminal portions contain chloroplastic and intraorganellar targeting information, respectively.  相似文献   

10.
The protein translocation channel at the plastid outer envelope membrane, Toc75, is essential for the viability of plants from the embryonic stage. It is encoded in the nucleus and is synthesized with a bipartite transit peptide that is cleaved during maturation. Despite its important function, the molecular mechanism and the biological significance of the full maturation of Toc75 remain unclear. In this study, we show that a type I signal peptidase (SPase I) is responsible for this process. First, we demonstrate that a bacterial SPase I converted Toc75 precursor to its mature form in vitro. Next, we show that disruption of a gene encoding plastidic SPase I (Plsp1) resulted in the accumulation of immature forms of Toc75, severe reduction of plastid internal membrane development, and a seedling lethal phenotype. These phenotypes were rescued by the overexpression of Plsp1 complementary DNA. Plsp1 appeared to be targeted both to the envelope and to the thylakoidal membranes; thus, it may have multiple functions.  相似文献   

11.
Although amino-terminal transit peptides of chloroplastic precursor proteins are known to be necessary and sufficient for import into chloroplasts, the mechanism by which they mediate this process is not understood. Another important question is whether different precursors share a common transport apparatus. We used 20-residue synthetic peptides corresponding to regions of the transit peptide of the precursor to the small subunit of ribulose bisphosphate carboxylase (prSS) as competitive inhibitors for the binding and translocation of precursor proteins into chloroplasts. Synthetic peptides with sequences corresponding to either end of the transit peptide had little to no effect on binding of prSS to chloroplasts, but significantly inhibited its translocation. Synthetic peptides corresponding to the central region of the transit peptide inhibited binding of prSS to chloroplasts. Each of the peptides inhibited binding or translocation of precursors to light-harvesting chlorophyll a/b protein, ferredoxin, and plastocyanin in the same manner and to a similar extent as prSS transport was inhibited. The results presented in this paper suggest that the central regions of the transit peptide of prSS mediate binding to the chloroplastic surface, whereas the ends of this transit peptide are more important for translocation across the envelope. Furthermore, all of the precursors tested appear to share components in the transport apparatus even though they are sorted to different chloroplastic compartments.  相似文献   

12.
Baldwin AJ  Inoue K 《The FEBS journal》2006,273(7):1547-1555
The protein translocation channel at the outer envelope membrane of chloroplasts (Toc75) is synthesized as a larger precursor with an N-terminal transit peptide. Within the transit peptide of the pea Toc75, a major portion of the 10 amino acid long stretch that contains nine glycine residues was shown to be necessary for directing the protein to the chloroplast outer membrane in vitro. In order to get insights into the mechanism by which the polyglycine stretch mediates correct targeting, we divided it into three tri-glycine segments and examined the importance of each domain in targeting specificity in vitro. Replacement of the most C-terminal segment with alanine residues resulted in mistargeting the protein to the stroma, while exchange of either of the other two tri-glycine regions had no effect on correct targeting. Furthermore, simultaneous replacement of the N-terminal and middle tri-glycine segments with alanine repeats did not cause mistargeting of the protein as much as those of the N- and C-terminal, or the middle and C-terminal segments. These results indicate that the most C-terminal tri-glycine segment is important for correct targeting. Exchanging this portion with a repeat of leucine or glutamic acid also caused missorting of Toc75 to the stroma. By contrast, its replacement with repeats of asparagine, aspartic acid, serine, and proline did not largely affect correct targeting. These data suggest that relatively compact and nonhydrophobic side chains in this particular region play a crucial role in correct sorting of Toc75.  相似文献   

13.
The Toc core complex consists of the pore-forming Toc75 and the GTPases Toc159 and Toc34. We confirm that the receptor form of Toc159 is integrated into the membrane. The association of Toc34 to Toc75/Toc159 is GTP dependent and enhanced by preprotein interaction. The N-terminal half of the pSSU transit peptide interacts with high affinity with Toc159, whereas the C-terminal part stimulates its GTP hydrolysis. The phosphorylated C-terminal peptide of pSSU interacts strongly with Toc34 and therefore inhibits binding and translocation of pSSU into Toc proteoliposomes. In contrast, Toc159 recognises only the dephosphorylated forms. The N-terminal part of the pSSU presequence does not influence binding to the Toc complex, but is able to block import into proteoliposomes through its interaction with Toc159. We developed a model of differential presequence recognition by Toc34 and Toc159.  相似文献   

14.
Mestres-Ortega D  Meyer Y 《Gene》1999,240(2):307-316
Screening of cDNA libraries at low stringency and complete sequencing of EST clones with homology to thioredoxins allowed us to characterize five new prokaryotic type Arabidopsis thaliana thioredoxins. All present N-terminal extensions with characteristics of transit peptides. Four are clustered in a phylogenetic tree with the chloroplastic thioredoxin m from red and green algae and higher plants, and their transit peptides have typical characteristics of chloroplastic transit peptides. One is clearly divergent and defines a new prokaryotic thioredoxin type that we have named thioredoxin x. Its transit peptide sequence presents characteristics of both chloroplastic and mitochondrial transit peptides. The five corresponding genes are expressed at different levels, but mostly in green tissues and in in-vitro cultivated cells.  相似文献   

15.
Abstract: Plastids with four‐membrane envelopes have evolved by several independent endosymbioses involving a eukaryotic alga as the endosymbiont and a protozoan predator as the host. It is assumed that their outermost membrane is derived from the phagosomal membrane of the host and that protein targeting to and across this membrane proceeds co‐translationally, including ER and the Golgi apparatus (e.g., chlorarachniophytes) or only ER (e.g., heterokonts). Since the two inner membranes (or the plastid envelope) of such a complex plastid are derived from the endosymbiont plastid, they are probably provided with Toc and Tic systems, enabling post‐translational passage of the imported proteins into the stroma. The third envelope membrane, or the periplastid one, originates from the endosymbiont plasmalemma, but what import apparatus operates in it remains enigmatic. Recently, Cavalier‐Smith (1999[5]) has proposed that the Toc system, pre‐existing in the endosymbiont plastid, has been relocated to the periplastid membrane, and that plastids having four envelope membranes contain two Toc systems operating in tandem and requiring the same targeting sequence, i.e., the transit peptide. Although this model is parsimonious, it encounters several serious obstacles, the most serious one resulting from the complex biogenesis of Toc75 which forms a translocation pore. In contrast to most proteins targeted to the outer membrane of the plastid envelope, this protein carries a complex transit peptide, indicating that a successful integration of the Toc system into the periplastid membrane would have to be accompanied by relocation of the stromal processing peptidase to the endosymbiont cytosol. However, such a relocation would be catastrophic because this enzyme would cleave the transit peptide off all plastid‐destined proteins, thus disabling biogenesis of the plastid compartment. Considering these difficulties, I suggest that in periplastid membranes two Toc‐independent translocation apparatuses have evolved: a porin‐like channel in chlorarachniophytes and cryptophytes, and a vesicular pathway in heterokonts and haptophytes. Since simultaneous evolution of a new transport system in the periplastid membrane and in the phagosomal one would be complicated, it is argued that plastids with four‐membrane envelopes have evolved by replacement of plastids with three‐membrane envelopes. I suggest that during the first round of secondary endosymbioses (resulting in plastids surrounded by three membranes), myzocytotically‐engulfed eukaryotic alga developed a Golgi‐mediated targeting pathway which was added to the Toc/Tic‐based apparatus of the endosymbiont plastid. During the second round of secondary endosymbioses (resulting in plastids surrounded by four membranes), phagocytotically‐engulfed eukaryotic alga exploited the Golgi pathway of the original plastid, and a new translocation system had to originate only in the periplastid membrane, although its emergence probably resulted in modification of the import machinery pre‐existing in the endosymbiont plastid.  相似文献   

16.
Screening of cDNA libraries at low stringency and complete sequencing of EST clones with homology to thioredoxins allowed us to characterize five new prokaryotic type Arabidopsis thaliana thioredoxins. All present N-terminal extensions with characteristics of transit peptides. Four are clustered in a phylogenetic tree with the chloroplastic thioredoxin m from red and green algae and higher plants, and their transit peptides have typical characteristics of chloroplastic transit peptides. One is clearly divergent and defines a new prokaryotic thioredoxin type that we have named thioredoxin x. Its transit peptide sequence presents characteristics of both chloroplastic and mitochondrial transit peptides. The five corresponding genes are expressed at different levels, but mostly in green tissues and in in-vitro cultivated cells.  相似文献   

17.
A unique aspect of protein transport into plastids is the coordinate involvement of two GTPases in the translocon of the outer chloroplast membrane (Toc). There are two subfamilies in Arabidopsis, the small GTPases (Toc33 and Toc34) and the large acidic GTPases (Toc90, Toc120, Toc132, and Toc159). In chloroplasts, Toc34 and Toc159 are implicated in precursor binding, yet mechanistic details are poorly understood. How the GTPase cycle is modulated by precursor binding is complex and in need of careful dissection. To this end, we have developed novel in vitro assays to quantitate nucleotide binding and hydrolysis of the Toc GTPases. Here we present the first systematic kinetic characterization of four Toc GTPases (cytosolic domains of atToc33, atToc34, psToc34, and the GTPase domain of atToc159) to permit their direct comparison. We report the KM, Vmax, and Ea values for GTP hydrolysis and the Kd value for nucleotide binding for each protein. We demonstrate that GTP hydrolysis by psToc34 is stimulated by chloroplast transit peptides; however, this activity is not stimulated by homodimerization and is abolished by the R133A mutation. Furthermore, we show peptide stimulation of hydrolytic rates are not because of accelerated nucleotide exchange, indicating that transit peptides function as GTPase-activating proteins and not guanine nucleotide exchange factors in modulating the activity of psToc34. Finally, by using the psToc34 structure, we have developed molecular models for atToc33, atToc34, and atToc159G. By combining these models with the measured enzymatic properties of the Toc GTPases, we provide new insights of how the chloroplast protein import cycle may be regulated.  相似文献   

18.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

19.
Toc34 is a member of the outer membrane translocon complex that mediates the initial stage of protein import into chloroplasts. Toc34, like most outer membrane proteins, is synthesized in the cytosol at its mature size without a cleavable transit peptide. The majority of outer membrane proteins do not require thermolysin-sensitive components on the chloroplastic surface or ATP for their insertion into the outer membrane. However, different results have been obtained concerning the factors required for Toc34 insertion into the outer membrane. Using an Arabidopsis homologue of pea Toc34, atToc34, we show that the insertion of atToc34 was greatly reduced by thermolysin pretreatment of chloroplasts as assayed either by protease digestion or by alkaline extraction. The insertion was also dependent on the presence of ATP or GTP. A mutant of atToc34 with the GTP-binding domain deleted still required ATP for optimal insertion, indicating that ATP was used by other protein components in the import system. The ATP-supported insertion was observed even in thermolysin-pretreated chloroplasts, suggesting that the protein component responsible for ATP-stimulated insertion is a different protein from the thermolysin-sensitive component that assists atToc34 insertion.  相似文献   

20.
We report the sequences of full-length cDNAs for the nuclear genes encoding the chloroplastic and cytosolic fructose-1,6-bisphosphate aldolase (EC 4.1.2.13) from spinach. A comparison of the deduced amino-acid sequences with one another and with published cytosolic aldolase sequences of other plants revealed that the two enzymes from spinach share only 54% homology on their amino acid level whereas the homology of the cytosolic enzyme of spinach with the known sequences of cytosolic aldolases of maize, rice and Arabidopsis range from 67 to 92%. The sequence of the chloroplastic enzyme includes a stroma-targeting N-terminal transit peptide of 46 amino acid residues for import into the chloroplast. The transit peptide exhibits essential features similar to other chloroplast transit peptides. Southern blot analysis implies that both spinach enzymes are encoded by single genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号