首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The work presented here is a first step toward a long term goal of systems biology, the complete elucidation of the gene regulatory networks of a living organism. To this end, we have employed DNA microarray technology to identify genes involved in the regulatory networks that facilitate the transition of Escherichia coli cells from an aerobic to an anaerobic growth state. We also report the identification of a subset of these genes that are regulated by a global regulatory protein for anaerobic metabolism, FNR. Analysis of these data demonstrated that the expression of over one-third of the genes expressed during growth under aerobic conditions are altered when E. coli cells transition to an anaerobic growth state, and that the expression of 712 (49%) of these genes are either directly or indirectly modulated by FNR. The results presented here also suggest interactions between the FNR and the leucine-responsive regulatory protein (Lrp) regulatory networks. Because computational methods to analyze and interpret high dimensional DNA microarray data are still at an early stage, and because basic issues of data analysis are still being sorted out, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe an approach for identifying gene expression patterns (clusters) obtained from multiple perturbation experiments based on a subset of genes that exhibit high probability for differential expression values.  相似文献   

2.
3.
Ye RW  Tao W  Bedzyk L  Young T  Chen M  Li L 《Journal of bacteriology》2000,182(16):4458-4465
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.  相似文献   

4.
In vivo genetic footprinting was developed in the yeast Saccharomyces cerevisiae to simultaneously assess the importance of thousands of genes for the fitness of the cell under any growth condition. We have developed in vivo genetic footprinting for Escherichia coli, a model bacterium and pathogen. We further demonstrate the utility of this technology for rapidly discovering genes that affect the fitness of E. coli under a variety of growth conditions. The definitive features of this system include a conditionally regulated Tn10 transposase with relaxed sequence specificity and a conditionally regulated replicon for the vector containing the transposase and mini-Tn10 transposon with an outwardly oriented promoter. This system results in a high frequency of randomly distributed transposon insertions, eliminating the need for the selection of a population containing transposon insertions, stringent suppression of transposon mutagenesis, and few polar effects. Successful footprints have been achieved for most genes longer than 400 bp, including genes located in operons. In addition, the ability of recombinant proteins to complement mutagenized hosts has been evaluated by genetic footprinting using a bacteriophage lambda transposon delivery system.  相似文献   

5.
6.
The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus using both total and unique count data the model was able to identify a set of conditionally beneficial or conditionally detrimental genes for each target condition that shed light on their functions and roles during various stress conditions.  相似文献   

7.
To gain insight into the cell envelope of Escherichia coli grown under aerobic and anaerobic conditions, lipoproteins were examined by using functional genomics. The mRNA expression levels of each of these genes under three growth conditions--aerobic, anaerobic, and anaerobic with nitrate--were examined by using both Affymetrix GeneChip E. coli antisense genome arrays and real-time PCR (RT-PCR). Many genes showed significant changes in expression level. The RT-PCR results were in very good agreement with the microarray data. The results of this study represent the first insights into the possible roles of unknown lipoprotein genes and broaden our understanding of the composition of the cell envelope under different environmental conditions. Additionally, these data serve as a test set for the refinement of high-throughput bioinformatic and global gene expression methods.  相似文献   

8.
9.
The Escherichia coli rnt gene, which encodes the RNA-processing enzyme RNase T, is cotranscribed with a downstream gene. Complete sequencing of this gene indicates that its coding region encompasses 1,538 amino acids, making it the longest known protein in E. coli. The gene (tentatively termed lhr for long helicase related) contains the seven conserved motifs of the DNA and RNA helicase superfamily II. An approximately 170-kDa protein is observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 35S-labeled extracts prepared from cells in which lhr is under the control of an induced T7 promoter. This protein is absent when lhr is interrupted or when no plasmid is present. Downstream of lhr is the C-terminal region of a convergent gene with homology to glutaredoxin. Interruptions of chromosomal lhr at two different positions within the gene do not affect the growth of E. coli at various temperatures in rich or minimal medium, indicating that lhr is not essential for usual laboratory growth. lhr interruption also has no effect on anaerobic growth. In addition, cells lacking Lhr recover normally from starvation, plate phage normally, and display normal sensitivities to UV irradiation and H2O2. Southern analysis showed that no other gene closely related to lhr is present on the E. coli chromosome. These data expand the known size range of E. coli proteins and suggest that very large helicases are present in this organism.  相似文献   

10.
As more whole-genome sequences become available, there is an increasing demand for high-throughput methods that link genes to phenotypes, facilitating discovery of new gene functions. In this study, we describe a new version of the Tn-seq method involving a modified EZ:Tn5 transposon for genome-wide and quantitative mapping of all insertions in a complex mutant library utilizing massively parallel Illumina sequencing. This Tn-seq method was applied to a genome-saturating Salmonella enterica serotype Typhimurium mutant library recovered from selection under 3 different in vitro growth conditions (diluted Luria-Bertani [LB] medium, LB medium plus bile acid, and LB medium at 42°C), mimicking some aspects of host stressors. We identified an overlapping set of 105 protein-coding genes in S. Typhimurium that are conditionally essential under at least one of the above selective conditions. Competition assays using 4 deletion mutants (pyrD, glnL, recD, and STM14_5307) confirmed the phenotypes predicted by Tn-seq data, validating the utility of this approach in discovering new gene functions. With continuously increasing sequencing capacity of next generation sequencing technologies, this robust Tn-seq method will aid in revealing unexplored genetic determinants and the underlying mechanisms of various biological processes in Salmonella and the other approximately 70 bacterial species for which EZ:Tn5 mutagenesis has been established.  相似文献   

11.
12.
The major regulator controlling the physiological switch between aerobic and anaerobic growth conditions in Escherichia coli is the DNA binding protein FNR. To identify genes controlled by FNR, we used Affymetrix Antisense GeneChips to compare global gene expression profiles from isogenic MG1655 wild-type and Deltafnr strains grown in glucose minimal media under aerobic or anaerobic conditions. We found that 297 genes contained within 184 operons were regulated by FNR and/or by O2 levels. The expression of many genes known to be involved in anaerobic respiration and fermentation was increased under anaerobic growth conditions, while that of genes involved in aerobic respiration and the tricarboxylic acid cycle were repressed as expected. The expression of nine operons associated with acid resistance was also increased under anaerobic growth conditions, which may reflect the production of acidic fermentation products. Ninety-one genes with no presently defined function were also altered in expression, including seven of the most highly anaerobically induced genes, six of which we found to be directly regulated by FNR. Classification of the 297 genes into eight groups by k-means clustering analysis indicated that genes with common gene expression patterns also had a strong functional relationship, providing clues for studying the function of unknown genes in each group. Six of the eight groups showed regulation by FNR; while some expression groups represent genes that are simply activated or repressed by FNR, others, such as those encoding functions for chemotaxis and motility, showed a more complex pattern of regulation. A computer search for FNR DNA binding sites within predicted promoter regions identified 63 new sites for 54 genes. We suggest that E. coli MG1655 has a larger metabolic potential under anaerobic conditions than has been previously recognized.  相似文献   

13.
To investigate the putative five-gene operon at 24.9 min on the Escherichia coli genome, which comprises the genes pabC, yceG, tmk, holB and ycfH, a method for the construction of an in frame deletion strain of the essential E. coli holB gene was developed. HolB, also referred to as delta prime or delta', is a subunit of the DNA polymerase III (Pol III) holoenzyme. The holB gene was replaced by the kanamycin resistance gene kka1, coding for amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene was expressed under the control of the promoter(s) of the putative five-gene operon. The holB gene is essential for bacterial growth and the deletion of holB exhibits no polar effects on the adjacent genes tmk or ycfH in terms of cell viability. The method of the holB null construction presented in this work allows for a simplified studying of interactions between the different subunits of DNA polymerase III.  相似文献   

14.
An Escherichia coli mutant, C18, which plates at an efficiency of 5.0 x 10(-4) under anaerobic condition, was isolated among spontaneous nalidixic-acid-resistant mutants. This strict aerobic mutation was mapped by P1 cotransduction with a gyrA linked transposon Tn10 and found to be at the gyrA gene. A low degree of superhelicity of pBR322 DNA isolated from C18 was demonstrated by agarose gel electrophoresis with various concentrations of ethidium bromide. The superhelical density of pBR322 isolated from C18 was 80% of the value of pBR322 isolated from wild-type bacteria cultured under aerobic condition, and 50% cultured under anaerobic condition. These results lead us to conclude that a certain mutation of the gyrA gene causes a decrease in DNA superhelicity and prevents anaerobic growth.  相似文献   

15.
16.
DNA microarray technology allows researchers to monitor the expressions of thousands of genes under different conditions, and to measure the levels of thousands of different DNA molecules at a given point in the life of an organism, tissue or cell. A wide variety of different diseases that are characterised by unregulated gene expression, DNA replication, cell division and cell death, can be detected early using microarrays. One of the major objectives of microarray experiments is to identify differentially expressed genes under various conditions. The detection of differential gene expression under two different conditions is very important in biological studies, and allows us to identify experimental variables that affect different biological processes. Most of the tests available in the literature are based on the assumption of normal distribution. However, the assumption of normality may not be true in real-life data, particularly with respect to microarray data.A test is proposed for the identification of differentially expressed genes in replicated microarray experiments conducted under two different conditions. The proposed test does not assume the distribution of the parent population; thus, the proposed test is strictly nonparametric in nature. We calculate the p-value and the asymptotic power function of the proposed test statistic. The proposed test statistic is compared with some of its competitors under normal, gamma and exponential population setup using the Monte Carlo simulation technique. The application of the proposed test statistic is presented using microarray data. The proposed test is robust and highly efficient when populations are non-normal.  相似文献   

17.
High-throughput analysis of genome-wide random transposon mutant libraries is a powerful tool for (conditional) essential gene discovery. Recently, several next-generation sequencing approaches, e.g. Tn-seq/INseq, HITS and TraDIS, have been developed that accurately map the site of transposon insertions by mutant-specific amplification and sequence readout of DNA flanking the transposon insertions site, assigning a measure of essentiality based on the number of reads per insertion site flanking sequence or per gene. However, analysis of these large and complex datasets is hampered by the lack of an easy to use and automated tool for transposon insertion sequencing data. To fill this gap, we developed ESSENTIALS, an open source, web-based software tool for researchers in the genomics field utilizing transposon insertion sequencing analysis. It accurately predicts (conditionally) essential genes and offers the flexibility of using different sample normalization methods, genomic location bias correction, data preprocessing steps, appropriate statistical tests and various visualizations to examine the results, while requiring only a minimum of input and hands-on work from the researcher. We successfully applied ESSENTIALS to in-house and published Tn-seq, TraDIS and HITS datasets and we show that the various pre- and post-processing steps on the sequence reads and count data with ESSENTIALS considerably improve the sensitivity and specificity of predicted gene essentiality.  相似文献   

18.
19.
ABSTRACT: BACKGROUND: The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains to reveal differences not apparent at the gene sequence level. RESULTS: A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 strain (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of Tn insertions or had very few. For three of these nine genes, part of the annotated gene lacked Tn integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498.L, STM14_2872, STM14_3360.RJ, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. CONCLUSIONS: Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene fitness among syntenic homologous genes. Further differences in fitness profiles among shared genes can be expected in other selective environments, with potential relevance for comparative systems biology.  相似文献   

20.
Understanding how complex networks of genes integrate to produce dividing cells is an important goal that is limited by the difficulty in defining the function of individual genes. Current resources for the systematic identification of gene function such as siRNA libraries and collections of deletion strains are costly and organism specific. We describe here integration profiling, a novel approach to identify the function of eukaryotic genes based upon dense maps of transposon integration. As a proof of concept, we used the transposon Hermes to generate a library of 360,513 insertions in the genome of Schizosaccharomyces pombe. On average, we obtained one insertion for every 29 bp of the genome. Hermes integrated more often into nucleosome free sites and 33% of the insertions occurred in ORFs. We found that ORFs with low integration densities successfully identified the genes that are essential for cell division. Importantly, the nonessential ORFs with intermediate levels of insertion correlated with the nonessential genes that have functions required for colonies to reach full size. This finding indicates that integration profiles can measure the contribution of nonessential genes to cell division. While integration profiling succeeded in identifying genes necessary for propagation, it also has the potential to identify genes important for many other functions such as DNA repair, stress response, and meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号