首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The form of families of curves relating K loss to time in systems containing hypolytic concentrations of resorcinol and of n-butyl alcohol points to the human red cell's being slightly permeable to K and Na even when it is in isotonic NaCl (or plasma), and to the effect of the hypolytic concentrations of lysin being such as to increase this permeability. The rate of reentry of K into red cells which have lost it is more rapid than the rate of the previous loss. This may be due to the reimmersion of the lysin-treated cells in isotonic KCl producing further modifications of the ion-restricting mechanisms associated with the red cell structure. The volume changes observed in systems which show the large K-Na exchanges produced by resorcinol and by n-butyl alcohol are not the same as those which would be expected on the basis of the dual mechanism of hemolysis hypothesis or of the colloid-osmotic hemolysis hypothesis. Extensive swelling of the red cells occurs only when the concentrations of lysin are large enough to produce considerable hemolysis.  相似文献   

2.
1. The volume-tonicity relations for human red cells exposed to a temperature of 48 degrees C. for 2 minutes remain the same as those for unheated human red cells. The heated systems show lysis in higher tonicities than the unheated systems do; this is probably largely due to fragmentation with its effect on the geometry of the situation, as suggested by Ham, Shen, Fleming and Castle. When the cells are heated to 48 degrees C. for longer times, the amount of fragmentation becomes considerable, but the volume-tonicity relation remains the same as before; the properties which are usually referred to as the osmotic properties of the red cell are accordingly not necessarily dependent on the integrity of the cell as a unit. 2. Heating to 52 degrees C. for 2 minutes profoundly modifies the volume-tonicity relation, very little swelling now occurring even in tonicities as low as 0.6. This is partly accounted for by the large K losses and K-Na exchanges which occur and which become greater as the tonicity is reduced and as the temperature is increased. Fragmentation and hemolysis also increase, the latter out of proportion to the expected effects of the former. Direct effects of heat on the cohesion of the red cell ultrastructure are probably involved.  相似文献   

3.
After incubation in isotonic KCl, dog red blood cells can be separated by centrifugation into subgroups which assume different cell volumes and possess different transport characteristics. Those red cells which swell in isotonic KCl exhibit a higher permeability to K and possess a greater volume dependence for transport of K than those red cells which shrink. A high Na permeability characterizes cells which shrink in isotonic KCl and these cells exhibit a larger volume-dependent Na flux than those red cells which swell. These two subgroups of red cells do not seem to represent two cell populations of different age. The results indicate that the population of normal cells is evidently heterogeneous in that the volume-dependent changes in Na and K permeability are distributed between differnt cell types rather than representing a single cell type which reciprocally changes its selectivity to Na and K.  相似文献   

4.
When the washed red cells of heparinized human blood are exposed at 4°C. to methanol, ethanol, guaiacol, or resorcinol in hypolytic concentrations in isotonic NaCl, the prolytic loss of K at the end of 20 hours varies from about 25 per cent of the initial K content of the cells in the case of 3.1 M methanol to about 55 per cent of the initial K in the case of 0.04 M resorcinol. As in the case of the prolytic losses observed with other lysins, the K loss is rapid at first and then slows down so that what appears to be a new steady state is reached logarithmically. The K lost from the cells during the period of the prolytic loss is replaced by an approximately equivalent amount of Na, derived from the isotonic NaCl in which the cells are suspended. The Na which enters can be replaced by K by washing the cells in isotonic KCl, and this K can again be replaced by Na by washing the cells in isotonic NaCl. The remainder of the cell K., i.e. the K which was not lost during the period of the prolytic loss, is retained in the cell unaffected by these washing procedures. The capacity of red cells for undergoing disk-sphere transformations is scarcely affected by their having been exposed to hypolytic concentrations of methanol, ethanol, guaiacol, or resorcinol in isotonic NaCl, and their resistance to osmotic hemolysis and to lysis by saponin and digitonin is altered only in minor respects even when as much as 50 per cent of the cell K has been exchanged for Na. Some restriction to the movement of K between the cell and its environment is apparently modified irreversibly when the cell is exposed to hypolytic concentrations of lysins, and the modification is such that only a fraction of the cell K is affected, the fraction being a function of the lysin concentration, the duration of its action, and other factors. A modification of some part of the cell structure and of the properties dependent on its integrity is probably involved: K may be lost more readily from some cells than from others, from some parts of the cell more readily than from other parts, or the explanation may lie in changes in the extent to which Hb binds ions or in modifications of metabolic processes.  相似文献   

5.
A model cell which controls its cation composition and volume by the action of a K-Na exchange pump and leaks for both ions working in parallel is presented. Equations are formulated which describe the behavior of this model in terms of three membrane parameters. From these equations and the steady state concentrations of Na, K, and Cl, values for these parameters in high potassium (HK) and low potassium (LK) sheep red cells are calculated. Kinetic experiments designed to measure the membrane parameters directly in the two types of sheep red cells are also reported. The values of the parameters obtained in these experiments agreed well with those calculated from the steady state concentrations of ions and the theoretical equations. It is concluded that both HK and LK sheep red cells control their cation composition and volume in a manner consistent with the model cell. Both have a cation pump which exchanges one sodium ion from inside the cell with one potassium ion from outside the cell but the pump is working approximately four times faster in the HK cell. The characteristics of the cation leak in the two cell types are also very different since the HK cells are relatively more leaky to sodium as compared with potassium than is the case in the LK cells. Both cell types show appreciable sodium exchange diffusion but this process is more rapid in the LK than in the HK cells.  相似文献   

6.
In systems containing human red cells and sodium taurocholate as a lysin, or distearyl lecithin as a sphering agent, the prolytic loss of K at 25°C. is accompanied by a gain of Na by the cell, the gain being somewhat greater than the K loss. A small volume increase accompanies the exchange. The kinetics of the K loss and the Na gain are similar to those already described; i.e., the changes are rapid at first, and slow down so that after 12 to 20 hours it appears that a new steady state is being approached. Similar, but smaller, losses of K and gains of Na occur when the cells stand in isotonic NaCl at 25°C. without the addition of a lysin or sphering agent. On these and other experimental grounds, it is impossible to retain the idea that the mammalian red cell in general is impermeable to cations. The cells nevertheless seem to be in a steady state with respect to their environment, their ionic composition changing as the composition of the environment is changed. The possible processes by means of which one steady state can be exchanged for another—changes in the permeability of a surface membrane, changes in the velocity of an active ion transfer process dependent on red cell metabolism, and changes in the activity of the ions in the red cell interior as a result of changes in an orderly internal structure—are discussed.  相似文献   

7.
Curves describing the loss of K from human red cells as a function of time can be interpreted in terms of an equation which treats the K content of the cell (varphi) as the result of an accumulation process occurring at a rate P and an outward diffusion process regulated by a constant a. The equation is useful for describing the observations and for exploring the mechanisms which may be responsible for the K losses, although it cannot be used for analyzing the experimental data in a strict sense in the absence of independent metabolic data because P and a may both be functions of time. The applicability of the equation is illustrated by its use in connection with experimental curves showing K loss as a function of time at 4 degrees , 25 degrees , and 37 degrees C. for systems containing human red cells in isotonic NaCl or NaCl-buffer. At 4 degrees C., the K loss follows an exponential curve approaching an asymptote in the neighborhood of varphi = 0.50 +/- 0.15. The corresponding value of P implies that the cells are able to accumulate about 0.6 per cent of their initial K per hour under these conditions. At 25 degrees C., the K loss starts exponentially but becomes roughly linear with time after 24 to 48 hours. The change of form is probably due to the appearance of autolysins in the system. Curves of a similar mixed or intermediate form may be obtained even at 4 degrees C. if the observations are sufficiently extended and if spontaneous hemolysis becomes appreciable. At 37 degrees C., the K loss is exponential for the first 24 to 36 hours, the curves approaching asymptotes which, translated into terms of P, indicate that the cells can accumulate about 7 +/- 3 per cent of their initial K per hour. After this time autolysis begins to affect the shape of the curves, the rate of K loss increasing rapidly. The effect of adding fluoride or iodoacetate is to lower the position of the asymptote to which the curves proceed; i.e., to decrease the accumulation rate P, to increase the diffusion constant a, or both. Cyanide has almost no effect. Hypotonicity has little effect on the rate of K loss at 37 degrees C.; at 4 degrees C., the rate of loss is somewhat less in hypotonic NaCl. The observation that the K loss in systems at 4 degrees C. and containing as much as 0.086 M NaF does not become complete, but proceeds exponentially towards an asymptote between varphi = 0.2 and 0.4, suggests that 20 to 40 per cent of the cell K is much less diffusible than the remainder at low temperatures and in the absence of lytic substances. A similar conclusion is suggested by the form of the curve for K loss into saline at 4 degrees C., an accumulation rate of 0.6 m. eq./litre of cells/hour at the end of 100 hours or more being improbably great for a system at such a low temperature and containing no added glucose.  相似文献   

8.
A volume increase of trout erythrocytes can be induced either by beta-adrenergic stimulation of a Na+/H+ antiport in an isotonic medium (isotonic swelling) or by suspending red cells in an hypotonic medium (hypotonic swelling). In both cases cells regulate their volume by a loss of osmolytes via specific pathways. After hypotonic swelling several volume-dependent pathways were activated allowing K+, Na+, taurine and choline to diffuse. All these pathways were fully inhibited by furosemide and inhibitors of the anion exchanger (DIDS, niflumic acid), and the K+ loss was mediated essentially via a 'Cl(-)-independent' pathway. After isotonic swelling, the taurine, choline and Na+ pathways were practically not activated and the K+ loss was strictly 'Cl(-)-dependent'. Thus cellular swelling is a prerequisite for activation of these pathways but, for a given volume increase, the degree of activation and the degree of anion-dependence of the K+ pathway depend on the nature of the stimulus, whether hormonal or by reduction of osmolality. It appears that the pattern of the response induced by hormonal stimulation is not triggered by either cellular cAMP (since it can be reproduced in the absence of hormone by isotonic swelling in an ammonium-containing saline) or by the tonicity of the medium in which swelling occurs since after swelling in an isotonic medium containing urea, the cells adopt the regulatory pattern normally observed after hypotonic swelling. We demonstrated that the stimulus is the change in cellular ionic strength induced by swelling: when ionic strength drops, the cells adopt the hypotonic swelling pattern; when ionic strength increases, the isotonic swelling pattern is activated. To explain this modulating effect of ionic strength a speculative model is proposed, which also allows the integration of two further sets of experimental results: (i) all the volume-activated transport systems are blocked by inhibitors of the anion exchanger and (ii) a Cl(-)-dependent, DIDS-sensitive K+ pathway can be activated in static volume trout red cells (i.e., in the absence of volume increase) by the conformational change of hemoglobin induced by the binding of O2 or CO to the heme.  相似文献   

9.
1. A method is described for measuring the accumulation of K at 37°C. by washed human red cells in glucose-containing systems in which the pH is kept constant, the K content of the cells being compared with that of the cells of systems which contain no added glucose but which are otherwise treated similarly. 2. In systems containing added glucose, the accumulation of K begins shortly after the cells have been warmed to 37°C., proceeds to a maximum which is reached after about 10 hours, and then falls exponentially. The maximum rate of accumulation is found during the first 3 hours. In systems which contain no added glucose, the K content of the cells appears to decrease exponentially with time for about 18 to 24 hours; thereafter the K content of the cells may decrease rapidly and the systems may show considerable hemolysis. Sometimes a small accumulation effect is observed during the first 2 to 3 hours; this may be the result of the washed cells not having been completely freed of glucose. 3. The accumulation process proceeds at its maximum rate at pH 7.4 to 7.6, which is also the pH at which the K loss from the red cells is at a minimum in systems containing no added glucose. 4. When red cells are stored at 4°C. for increasing lengths of time, the storage is accompanied by increasing K loss and the maximum rate of accumulation observed when the cells are warmed to 37°C. at first becomes greater. If the storage at 4°C. is continued for more than 3 to 4 days, the rate of the accumulation which occurs at 37°C decreases again, the accumulation mechanism showing progressive deterioration with time even at low temperatures. This deterioration has a counterpart in the progressive deterioration (deduced from the analysis of the curves relating K content and time) of the accumulation mechanism with time at 37°C. 5. The accumulation of K occurs at a maximum rate when the concentration of glucose in the system is between 50 and 200 mg./100 ml. Its temperature coefficient over the range 27–37°C. is 2.4. In the presence of glucose and at pH 7.6, accumulation of K takes place from isotonic mixtures of KCl and LiCl or of KCl and CsCl only a little less actively than from mixtures of KCl and NaCl; i.e., the accumulation of K under optimum conditions seems to be an active process which is at least partly independent of the excretion of Na.  相似文献   

10.
Human erythrocytes were incubated in isotonic solutions of different monovalent cations. The apparent size of the red cells measured on scanning electron microscopic pictures decreases in the order Li+ greater than Na+ = K+ greater than Rb+. These differences in size are abolished after pretreatment with trypsin, which removes a large part of the charges associated with membrane glycoproteins. Shape alterations are also observed. Normal biconcave shapes are visible after Na+ or K+ incubation, whereas Li+ leads to flabby, flattened cells with a certain tendency to crenation, and Rb+ causes more pronounced biconcavity with a certain tendency to cupping. The overall effects of pretreatment with trypsin are similar to those of Li+. Our results provide evidence that the electrostatic repulsion of glycoproteins and other charged membrane components may play an essential role in maintaining red cell shape.  相似文献   

11.
The prolytic loss of K., i.e. the loss of K which takes place from red cells exposed to hypolytic concentrations of lysins, has been measured in systems containing distearyl lecithin, sodium taurocholate, sodium tetradecyl sulfate, saponin, and digitonin, by means of the flame photometer. The lysins are added in various concentrations to washed red cells from heparinized human blood, and the K in the supernatant fluids is determined after various intervals of time and at various temperatures. The prolytic loss Kp is compared in every experiment with the loss Ks into standard systems containing isotonic NaCl alone, with no lysin. The losses Ks and Kp increase with time, so that new steady states are approached logarithmically. The values of Kp which correspond to the new steady states depend on the lysin used, being greatest with taurocholate and smallest with digitonin. The temperature coefficient of the loss is positive, and the extent and course of the losses have no apparent relation to the prolytic shape changes. In systems in which the loss of K is appreciable, it can be inhibited by the addition of plasma or of either cholesterol or serum albumin. Of these two substances, even when used in quantities which have an approximately equal effect in inhibiting hemolysis, serum albumin is much the more effective. Just as the prolytic loss of K occurs without the loss of any Hb, so in concentrations of lysin sufficient to produce hemolysis the loss of K, expressed as a percentage of the total red cell K, increases much more rapidly with lysin concentration than does the loss of Hb expressed as a percentage of the total Hb. The explanation of these relations depends on whether the loss of K is treated as being all-or-none in the case of the individual cell or as being the result of the loss of part of the K from all of the cells. This point has still to be decided.  相似文献   

12.
In the present experiments it has been possible to study large numbers of X-ray induced chromatid deletions, or breads, in Chinese hamster chromosomes and to discern whether or not a sister chromatid exchange also occurs at the point of breadage. Chromatid deletions are only infrequently associated with a sister chromatid exchange. This is contrary to the expectations derived from the exchange hypothesis of Revell. Pn the basis of this hypothesis, in which chromatid deletions are considered to be incomplete exchanges that occur in the necks of little loops in the chromosomes, 40% of the chromatid breaks are expected to be associated with sister chromatid exchanges. The present data are in accord with the conclusions drawn from the earlier autoradiographic experiments of HEDDLE AND BODYCOTE, and show that chromatide breaks can be accounted for on the basis of the breakage-and reunion hypothesis, with the majority being simple breaks and some being incomplete exchanges between two such breaks.  相似文献   

13.
1. Differences in the fragility of human red cells are observed in equimolar solutions of the chlorides of the monovalent cations. The cells are most fragile in LiCl and least fragile in NaCl, the salts falling in the order Li > K >== Rb > Cs > Na. 2. The difference between the tonicity-volume relations in systems containing LiCl and systems containing NaCl lies in the molarity of the solution of LiCl which is isotonic (isoplethechontic) with plasma being considerably greater (0.189 M) than the molarity of the solution of NaCl which is isotonic (isoplethechontic) with plasma (0.160 M). The difference cannot be stated meantime in any simpler terms than these; if the activity coefficients are taken into account, it becomes even greater. The tonicity-volume relations for the two systems are otherwise almost identical; the value of R for the two systems is almost the same, the critical volumes at which the cells of least resistance hemolyze are almost identical, and the critical volumes at which the cells of average resistance hemolyze are almost identical. 3. The LiCl effect on volume occurs as soon after the addition of the cells to 0.172 M LiCl as the hematocrit method allows one to measure it. It is reversible by washing with 0.172 M NaCl.  相似文献   

14.
This paper examines the experimental evidence presented by Mazur and his colleagues to support their hypothesis that the survival of slowly frozen human red blood cells is primarily dependent on the fraction of water that remains unfrozen, rather than on the high concentrations of sodium chloride produced by the formation of ice. This hypothesis is in direct conflict with the general belief that freezing injury under such conditions is caused by the concentration of solutes in the solution surrounding the cells: if the "unfrozen fraction" hypothesis is true, then much of the evidence supporting that belief must be dismissed as mere coincidence. We have reexamined Mazur's data, and have suggested an alternative explanation--that cells which are initially suspended in solutions that are not isotonic differ in their susceptibility to subsequent freezing and thawing, shrunken cells being more resistant and swollen cells more susceptible than normal cells. If this is true then the data can be explained without invoking a direct effect of the unfrozen fraction, solely on the basis of changes in the concentration of the solution surrounding the cells. We cite other experimental evidence, obtained in the absence of freezing, that red blood cells do indeed possess the required property. We further argue that the known effects of variations in cooling and warming rate, and in hematocrit, are able to account for the features observed by Mazur and his colleagues in their three published studies.  相似文献   

15.
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control.  相似文献   

16.
Cation loss and hemolysis of various mammalian red cells suspended in isotonic non-electrolyte media were investigated. Sucrose buffered with 10 mM Tris-Hepes, pH 7.4 was used as the non-permeable non-electrolyte. Mammals from which the red cells were derived include the human, guinea pig, rat, rabbit, newborn calf, newborn piglet and pig, all of which contain K as the predominant cation species (HK type) and the dog, cat, sheep and cow, all of which possess Na as the predominant cation species (LK type). Of HK cells, a rapid efflux of K takes place from humans, rats and guinea pigs. Of LK type cells, the dog and cat exhibit an augmented membrane permeability to Na. The governing factors which influence cation permeability are the change in pH, temperature, and ionic strength. In response to increase in pH, the red cells of humans, dogs and cats become more permeable to cations, whereas the red cells of rat and rabbit are unaffected. In response to increase in temperature, HK type cells exhibit augmented K efflux, while the Na loss from the dog and cat cells manifest a well-defined maximum at near 37 degrees C. In all cases, a small substitution of sucrose by an equal number of osmoles of salts results in a dramatic decrease in cation loss. By contrast, the red cells of the rabbit, newborn calf, adult cow, newborn piglet, adult pig and sheep display no discernible increase in ion-permeability under the conditions alluded to above. In some species including the newborn calf, dog, and cat, an extensive hemolysis occurs usually within an hour in isotonic buffered sucrose solution. The osmolarity of sucrose solution affects these cells differently in that as the osmolarity increases from 200--500 mM, hemolytic rates of the calf and dog reach a saturation near 300 mM sucrose, whereas the hemolytic rate of the cat decreases progressively. Common features pertaining to this hemolysis are (1) the intracellular alkalinization process; and (2) the diminution of the cell volume which take place prior to and onset of hemolysis. SITS, a potent anion transport inhibitor, completely protects the cells from hemolysis by inhibiting chloride flux and the concomitant rise in intracellular pH.  相似文献   

17.
K-Cl cotransport activity in frog erythrocytes was estimated as a Cl- -dependent component of K+ efflux from cells incubated in Cl- - or NO3- -containing medium at 20 degrees C. Decreasing the osmolality of the medium resulted in an increase in K+ efflux from the cells in a Cl- medium but not in an NO3- medium. Treatment of red cells with 5 mM NaF caused a significant decrease (approximately 50%) in K+ loss from the cells in iso- and hypotonic Cl- media but only a small decrease in K+ loss in isotonic NO3- medium. Addition of 1 mM vanadate to an isotonic Cl- medium also led to a significant reduction in K+ efflux. Similar inhibitory effects of NaF and vanadate on K+ efflux in a Cl- medium, but not in an NO3- medium were observed when the incubation temperature was decreased from 20 to 5 degrees C. Thus, under various experimental conditions, NaF and vanadate inhibited about 50% of Cl- -dependent K+ efflux from frog red cells probably due to inhibition of protein phosphatases. Cl- -dependent K+ (86Rb) influx into frog erythrocytes was nearly completely blocked (approximately 94%) by 5 mM NaF. In a NO3- medium, K+ influx was mainly mediated by the Na+,K+ pump and was unchanged in the presence of 5 mM NaF, 0.03 mM Al3+ or their combination. These data indicate that G proteins or cAMP are not involved in the regulation of Na+,K+ pump activity which is activated by catecholamines and phosphodiesterase blockers in these cells.  相似文献   

18.
1. Concentrations of BaCl2, MgCl2, SrCl2, and CaCl2 can be found in which the volume of washed human red cells remains almost unchanged for short periods of time; in more concentrated solutions the cells shrink, and in less concentrated ones they swell. Between tonicities of about 1.5 and 0.75, the van't Hoff-Mariotte law applies roughly, but at lower tonicities the red cell volume is anomalously great, sometimes in the absence of hemolysis. 2. If the cells are allowed to stand at 4°C. in the media of different tonicities, the volume changes are not maintained. The volumes decrease in a complex way, and the decreases are accompanied by a loss of K from the cells and an entry of the external cation into them. 3. With two exceptions, these ion exchanges are not accompanied by any important changes in the osmotic, mechanical, or heat fragility of the red cells. The exceptions are a marked effect of BaCl2 on heat fragmentation, and of CaCl2 on osmotic and mechanical fragilities.  相似文献   

19.
Human red blood cells were overloaded with homogeneous human hexokinase using a procedure of encapsulation based on hypotonic hemolysis and isotonic resealing and reannealing to achieve a final activity that was 15 times higher than that in control cells. Storage for 5 weeks at 4 degrees C of hexokinase-overloaded erythrocytes shows that these cells undergo small K+ leakage and mean cell volume increase compared with control cells. Furthermore, after these 5 weeks of storage the 2,3-bisphosphoglycerate content was normal while the ATP concentration was slightly reduced. These results and other properties suggest that encapsulation of key glycolytic enzymes in erythrocytes can provide a new way to maintain in vitro functionally active red blood cells for at least 5 weeks.  相似文献   

20.
Guanine nucleotide binding (G) proteins are heterotrimers that couple a wide range of receptors to ionic channels. The coupling may be indirect, via cytoplasmic agents, or direct, as has been shown for two K+ channels and two Ca2+ channels. One example of direct G protein gating is the atrial muscarinic K+ channel K+[ACh], an inwardly rectifying K+ channel with a slope conductance of 40 pS in symmetrical isotonic K+ solutions and a mean open lifetime of 1.4 ms at potentials between -40 and -100 mV. Another is the clonal GH3 muscarinic or somatostatin K+ channel, also inwardly rectifying but with a slope conductance of 55 pS. A G protein, Gk, purified from human red blood cells (hRBC) activates K+ [ACh] channels at subpicomolar concentrations; its alpha subunit is equipotent. Except for being irreversible, their effects on gating precisely mimic physiological gating produced by muscarinic agonists. The alpha k effects are general and are similar in atria from adult guinea pig, neonatal rat, and chick embryo. The hydrophilic beta gamma from transducin has no effect while hydrophobic beta gamma from brain, hRBCs, or retina has effects at nanomolar concentrations which in our hands cannot be dissociated from detergent effects. An anti-alpha k monoclonal antibody blocks muscarinic activation, supporting the concept that the physiological mediator is the alpha subunit not the beta gamma dimer. The techniques of molecular biology are now being used to specify G protein gating. A "bacterial" alpha i-3 expressed in Escherichia coli using a pT7 expression system mimics the gating produced by hRBC alpha k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号