首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cox17p is essential for the assembly of functional cytochrome c oxidase (CCO) and for delivery of copper ions to the mitochondrion for insertion into the enzyme in yeast. Although this small protein has already been cloned or purified from humans, mice, and pigs, the function of Cox17p in the mammalian system has not yet been elucidated. In vitro biochemical data for mammalian Cox17p indicate that the copper binds to the sequence -KPCCAC-. Although mouse embryos homozygous for COX17 disruption die between embryonic days E8.5 and E10, they develop normally until E6.5. This phenotype is strikingly similar to embryos of Ctr1(-/-), a cell surface copper transporter, in its lethality around the time of gastrulation. COX17-deficient embryos exhibit severe reductions in CCO activity at E6.5. Succinate dehydrogenase activity and immunoreactivities for anti-COX subunit antibodies were normal in the COX17(-/-) embryos, indicating that this defect was not caused by the deficiency of other complexes and/or subunits but was caused by impaired CCO activation by Cox17p. Since other copper chaperone (Atox1 and CCS)-deficient mice show a more moderate defect, the disruption of the COX17 locus causes the expression of only the phenotype of Ctr1(-/-). We found that the activity of lactate dehydrogenase was also normal in E6.5 embryos, implying that the activation of CCO by Cox17p may not be essential to the progress of embryogenesis before gastrulation.  相似文献   

2.
3.
The assembly of the copper sites in cytochrome c oxidase involves a series of accessory proteins, including Cox11, Cox17, and Sco1. The two mitochondrial inner membrane proteins Cox11 and Sco1 are thought to be copper donors to the Cu(B) and Cu(A) sites of cytochrome oxidase, respectively, whereas Cox17 is believed to be the copper donor to Sco1 within the intermembrane space. In this report we show Cox17 is a specific copper donor to both Sco1 and Cox11. Using in vitro studies with purified proteins, we demonstrate direct copper transfer from CuCox17 to Sco1 or Cox11. The transfer is specific because no transfer occurs to heterologous proteins, including bovine serum albumin and carbonic anhydrase. In addition, a C57Y mutant of Cox17 fails to transfer copper to Sco1 but is competent for copper transfer to Cox11. The in vitro transfer studies were corroborated by a yeast cytoplasm expression system. Soluble domains of Sco1 and Cox11, lacking the mitochondrial targeting sequence and transmembrane domains, were expressed in the yeast cytoplasm. Metallation of these domains was strictly dependent on the co-expression of Cox17. Thus, Cox17 represents a novel copper chaperone that delivers copper to two proteins.  相似文献   

4.
Yeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis. This suggests that Cox4p, which contacts Cox1p and Cox3p in the holoenzyme, can be incorporated into COX by two alternative pathways. In addition to subunits of COX, some Cox3p intermediates contain Rcf1p, a protein associated with the supercomplex that stabilizes the interaction of COX with the bc1 (ubiquinol-cytochrome c reductase) complex. Finally, our results indicate that although assembly of the Cox1p module is not contingent on the presence of Cox3p, the converse is not true, as none of the Cox3p subassemblies were detected in a mutant blocked in translation of Cox1p. These studies support our proposal that Cox3p and Cox1p are separate assembly modules with unique compositions of ancillary factors and subunits derived from the nuclear genome.  相似文献   

5.
Copper chaperone for cytochrome c oxidase (Cox17) is a 7 kDa copper-binding protein, which facilitates incorporation of copper ions into Cu(A) site of cytochrome c oxidase. Cox17 contains six conserved Cys residues and occurs in three different oxidative states, which display different metal-binding properties and stability. In the present study, we have elaborated technologies for production of partially oxidized human recombinant Cox17 in a bacterial expression system and purification of fully oxidized Cox17. For this purpose we used Escherichia coli Origami strain, which is deficient in thioredoxin and thioredoxin reductase systems and allows formation of disulfide bonds in cytoplasmic proteins. Fully oxidized Cox17 was purified by a simplified two-step procedure including gel filtration and cation exchange chromatography. By using mass spectrometry we demonstrated that application of 2-mercaptoethanol (2-ME) during purification leads to formation of its mixed disulfide adducts with Cox17. Moreover, partially reduced Cox17 can form mixed disulfide adducts also with the cellular reducing agent glutathione, which abolishes copper-binding ability of partially reduced Cox17.  相似文献   

6.
Cox11p is an integral protein of the inner mitochondrial membrane that is essential for cytochrome c oxidase assembly. The bulk of the protein is located in the intermembrane space and displays high levels of evolutionary conservation. We have analyzed a collection of site-directed and random cox11 mutants in an effort to further define essential portions of the molecule. Of the alleles studied, more than half had no apparent effect on Cox11p function. Among the respiration deficiency-encoding alleles, we identified three distinct phenotypes, which included a set of mutants with a misassembled or partially assembled cytochrome oxidase, as indicated by a blue-shifted cytochrome aa(3) peak. In addition to the shifted spectral signal, these mutants also display a specific reduction in the levels of subunit 1 (Cox1p). Two of these mutations are likely to occlude a surface pocket behind the copper-binding domain in Cox11p, based on analogy with the Sinorhizobium meliloti Cox11 solution structure, thereby suggesting that this pocket is crucial for Cox11p function. Sequential deletions of the matrix portion of Cox11p suggest that this domain is not functional beyond the residues involved in mitochondrial targeting and membrane insertion. In addition, our studies indicate that Deltacox11, like Deltasco1, displays a specific hypersensitivity to hydrogen peroxide. Our studies provide the first evidence at the level of the cytochrome oxidase holoenzyme that Cox1p is the in vivo target for Cox11p and suggest that Cox11p may also have a role in the response to hydrogen peroxide exposure.  相似文献   

7.
It was found that cytochrome oxidase from bovine cardiac muscle possesses marked superoxide dismutase activity. Superoxide dismutase activity is inhibited by cyanide and azide or by alkaline or thermal treatments. This activity is also suppressed by chelating agents, e.g. bathocuproin. The data obtained indicate that superoxide dismutase activity of cytochrome oxidase is due to the copper atoms of the enzyme. The experiments on the copper-containing subunit support this conclusion. Possible physiological significance of superoxide dismutase activity of cytochrome oxidase is discussed.  相似文献   

8.
Cytochrome c oxidase (complex IV) of the respiratory chain is assembled from nuclear and mitochondrially-encoded subunits. Defects in the assembly process lead to severe human disorders such as Leigh syndrome. Shy1 is an assembly factor for complex IV in Saccharomyces cerevisiae and mutations of its human homolog, SURF1, are the most frequent cause for Leigh syndrome. We report that Shy1 promotes complex IV biogenesis through association with different protein modules; Shy1 interacts with Mss51 and Cox14, translational regulators of Cox1. Additionally, Shy1 associates with the subcomplexes of complex IV that are potential assembly intermediates. Formation of these subcomplexes depends on Coa1 (YIL157c), a novel assembly factor that cooperates with Shy1. Moreover, partially assembled forms of complex IV bound to Shy1 and Cox14 can associate with the bc1 complex to form transitional supercomplexes. We suggest that Shy1 links Cox1 translational regulation to complex IV assembly and supercomplex formation.  相似文献   

9.
When cytochrome c oxidase is incubated at 43 degrees C for approximately 75 min in a solution containing the zwitterionic detergent sulfobetaine 12, the CuA site is converted into a type II copper as judged by changes in the 830-nm absorption band and the EPR spectrum of the enzyme. SDS-PAGE and sucrose gradient ultracentrifugation indicate concomitant loss of subunit III and monomerization of the enzyme during the heat treatment. Comparison of the optical and resonance Raman spectra of the heat-treated and native protein shows that the heme chromophores are not significantly perturbed; the resonance Raman data indicate that the small heme perturbations observed are limited to the cytochrome a3 site. Proton pumping measurements, conducted on the modified enzyme reconstituted into phospholipid vesicles, indicate that these vesicles are unusually permeable toward protons during turnover, as previously reported for the p-(hydroxymercuri)benzoate-modified oxidase and the modified enzyme obtained by heat treatment in lauryl maltoside. The sulfobetaine 12 modified enzyme is no longer capable of undergoing the recently reported conformational transition in which the tryptophan fluorescence changes upon reduction of the low-potential metal centers. Control studies on the monomeric and subunit III dissociated enzymes suggest that the disruption of this conformational change in the heat-treated oxidase is most likely associated with perturbation of the CuA site. These results lend support to the suggestion that the fluorescence-monitored conformational change of the native enzyme is initiated by reduction of the CuA site [Copeland et al. (1987) Biochemistry 26, 7311].  相似文献   

10.
We have identified Cox20p, a 23.8-kDa protein of the mitochondrial inner membrane that is involved in the biogenesis of the yeast cytochrome oxidase complex. Cytochrome oxidase subunit 2 (Cox2p) accumulates as a precursor in cox20 mutants, suggesting a defect in biogenesis of this mitochondrially encoded protein. The inability of cox20 mutants to process the subunit 2 precursor (pCox2p) is not due to impaired export of the protein across the inner membrane or to an inactive Imp1p/Imp2p peptidase. Rather, Cox20p specifically binds the newly synthesized pCox2p, a step required to present the exported pCox2p as a substrate to the Imp1p peptidase. All of the endogenous pCox2p accumulated in an Deltaimp1 mutant, and a small fraction of Cox2p in wild type yeast, is detected in a complex with Cox20p. Following maturation Cox2p remained associated with Cox20p, prior to assembling into the cytochrome oxidase complex. We propose that Cox20p acts as a membrane-bound chaperone necessary for cleavage of pCox2p and for interaction of the mature protein with other subunits of cytochrome oxidase in a later step of the assembly process.  相似文献   

11.
Horn D  Barrientos A 《IUBMB life》2008,60(7):421-429
Metals are essential elements of all living organisms. Among them, copper is required for a multiplicity of functions including mitochondrial oxidative phosphorylation and protection against oxidative stress. Here we will focus on describing the pathways involved in the delivery of copper to cytochrome c oxidase (COX), a mitochondrial metalloenzyme acting as the terminal enzyme of the mitochondrial respiratory chain. The catalytic core of COX is formed by three mitochondrially-encoded subunits and contains three copper atoms. Two copper atoms bound to subunit 2 constitute the Cu(A) site, the primary acceptor of electrons from ferrocytochrome c. The third copper, Cu(B), is associated with the high-spin heme a(3) group of subunit 1. Recent studies, mostly performed in the yeast Saccharomyces cerevisiae, have provided new clues about 1) the source of the copper used for COX metallation; 2) the roles of Sco1p and Cox11p, the proteins involved in the direct delivery of copper to the Cu(A) and Cu(B) sites, respectively; 3) the action mechanism of Cox17p, a copper chaperone that provides copper to Sco1p and Cox11p; 4) the existence of at least four Cox17p homologues carrying a similar twin CX(9)C domain suggestive of metal binding, Cox19p, Cox23p, Pet191p and Cmc1p, that could be part of the same pathway; and 5) the presence of a disulfide relay system in the intermembrane space of mitochondria that mediates import of proteins with conserved cysteines motifs such as the CX(9)C characteristic of Cox17p and its homologues. The different pathways are reviewed and discussed in the context of both mitochondrial COX assembly and copper homeostasis.  相似文献   

12.
G Goodman  J S Leigh 《Biochemistry》1985,24(9):2310-2317
Electron paramagnetic resonance (EPR) at 15 K was used to probe the magnetic interaction between the visible copper CuA2+ and ferric cytochrome a in the carbon monoxide compound of beef heart cytochrome oxidase. At pH 8.6, the midpoint potentials (Em's) for one-electron oxidation of CuA+ and cytochrome a2+ were found to be 195 and 235 mV, respectively. Because the Em of CuA is well below that of cytochrome a under these conditions, the microwave power saturation of CuA could be measured as a function of percentage cytochrome a oxidized. Although progressive power saturation data directly provide only the product of the spin-lattice and transverse relaxation rates delta [1/(T1T2)], Castner's theory for the saturation of inhomogeneously broadened lines [Castner, T.G., Jr. (1959) Phys. Rev. 115 (6), 1506-1515], along with our own theoretical formulation of the dipolar T2, enabled us to determine the change in T1 of CuA due to dipolar relaxation by cytochrome a. The orientation of the principal g values of CuA with respect to those of cytochrome a was evaluated in partially oriented membranous multilayers. When allowance was made for uncertainties in the relative CuA-cytochrome a configuration and in the dipolar axis-magnetic field orientation, a range for the spin-spin distance r was calculated on the basis of the dipolar T1 of the gx component of CuA. This distance range was further restricted by consideration of T1 for the nonunique orientations of CuA giving rise to the gy signal. Only those values of r are possible for which the calculated T1 ratio (gx/gy) is equal to the experimentally determined ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
Sec1p/Munc18 (SM) proteins are essential for membrane fusion events in eukaryotic cells. Here we describe a systematic, structure-based mutational analysis of the yeast SM protein Sly1p, which was previously shown to function in anterograde endoplasmic reticulum (ER)-to-Golgi and intra-Golgi protein transport. Five new temperature-sensitive (ts) mutants, each carrying a single amino acid substitution in Sly1p, were identified. Unexpectedly, not all of the ts mutants exhibited striking anterograde ER-to-Golgi transport defects. For example, in cells of the novel sly1-5 mutant, transport of newly synthesized lysosomal and secreted proteins was still efficient, but the ER-resident Kar2p/BiP was missorted to the outside of the cell, and two proteins, Sed5p and Rer1p, which normally shuttle between the Golgi and the ER, failed to relocate to the ER. We also discovered that in vivo, Sly1p was associated with a SNARE complex formed on the ER, and that in vitro, the SM protein directly interacted with the ER-localized nonsyntaxin SNAREs Use1p/Slt1p and Sec20p. Furthermore, several conditional mutants defective in Golgi-to-ER transport were synthetically lethal with sly1-5. Together, these results indicate a previously unrecognized function of Sly1p in retrograde transport to the endoplasmic reticulum.  相似文献   

16.
Cation translocation across the membrane of cytochrome oxidase reconstituted vesicles may be followed with a simple spectrophotometric method. Cytochrome oxidase reconstituted vesicles, supplemented with ascorbate and cytochrome c. induce large spectral changes of the positive dye safranine, reversed by uncouplers and inhibitors of respiration. The dye is probably accumulated in the inner space of the vesicles, where it reaches high concentrations and aggregates. The spectral shifts and the absorbance changes, due to aggregation, are proportional to the amount of the dye taken up and depend on the respiratory control. In the presence of potassium, valinomycin causes an inhibition, whereas nigericin stimulates the dye uptake. The data are discussed in terms of electrical potential dependent fluxes.  相似文献   

17.
Assembly of the core subunits of the aa(3)-type cytochrome c oxidase in mitochondria and aerobic bacteria such as Rhodobacter sphaeroides requires the association of three subunits and the formation of five to seven metal centers. Several assembly proteins are required for the late stages of oxidase assembly in eukaryotes; some of these are also present in Rb. sphaeroides. To investigate the role of one of these proteins, Cox11p, the mitochondrial-like oxidase of Rb. sphaeroides was overexpressed and purified from cells that lacked cox11, the gene for Cox11p. The oxidase that assembled in the absence of Cox11p lacked Cu(B) at the active site and contained greatly reduced amounts of metal at the magnesium/manganese-binding site between subunits I and II. This inactive oxidase, however, did contain hemes a and a(3), Cu(A), and all three subunits. These results indicate that Cox11p is required at a late, perhaps final, step in the assembly of cytochrome oxidase, most likely the insertion of Cu(B). Oxidase which assembled in a strain with a low copy number of cox11 appeared nearly wild type, suggesting that Cox11p is required in substoichiometric amounts for its role in oxidase assembly.  相似文献   

18.
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by the perturbed equilibrium method. We have prepared a three-electron-reduced, CO-inhibited form of the enzyme in which cytochrome a and copper A are partially reduced and in an intramolecular redox equilibrium. When these samples were irradiated with a nitrogen laser (0.6-ns, 1.0-mJ pulses) to photodissociate the bound CO, changes in absorbance at 598 and 830 nm were observed which were consistent with a fast electron transfer from cytochrome a to copper A. The absorbance changes at 598 nm gave an apparent rate of 17,000 +/- 2000 s-1 (1 sigma), at pH 7.0 and 25.5 degrees C. These changes were not observed in either the CO mixed-valence or the CO-inhibited fully reduced forms of the enzyme. The rate was fastest at about pH 8.0, falling off toward both lower and higher pHs. There was a small but clear temperature dependence. The process was also observed in the cytochrome c-cytochrome c oxidase high-affinity complex. The electron equilibration measured between cytochrome a and copper A is far faster than any rate measured or inferred previously for this process.  相似文献   

19.
Sco1 is implicated in the copper metallation of the Cu(A) site in Cox2 of cytochrome oxidase. The structure of Sco1 in the metallated and apo-conformers revealed structural dynamics primarily in an exposed region designated loop 8. The structural dynamics of loop 8 in Sco1 suggests it may be an interface for interactions with Cox17, the Cu(I) donor and/or Cox2. A series of conserved residues in the sequence motif (217)KKYRVYF(223) on the leading edge of this loop are shown presently to be important for yeast Sco1 function. Cells harboring Y219D, R220D, V221D, and Y222D mutant Sco1 proteins failed to restore respiratory growth or cytochrome oxidase activity in sco1Delta cells. The mutant proteins are stably expressed and are competent to bind Cu(I) and Cu(II) normally. Specific Cu(I) transfer from Cox17 to the mutant apo-Sco1 proteins proceeds normally. In contrast, using two in vivo assays that permit monitoring of the transient Sco1-Cox2 interaction, the mutant Sco1 molecules appear compromised in a function with Cox2. The mutants failed to suppress the respiratory defect of cox17-1 cells unlike wild-type SCO1. In addition, the mutants failed to suppress the hydrogen peroxide sensitivity of sco1Delta cells. These studies implicate different surfaces on Sco1 for interaction or function with Cox17 and Cox2.  相似文献   

20.
The extracellular domain of the epidermal growth factor (EGF) receptor (EGFR) comprises four subdomains (I-IV) and mediates binding of several different polypeptide ligands, including EGF, transforming growth factor-alpha, and heparin-binding EGF. Previous studies have predominantly implicated subdomain III in ligand binding. To investigate a possible role for sequences in subdomain IV, we constructed several mutant EGFRs in which clusters of charged or aromatic amino acids were replaced with alanine. Analysis of stably transfected Chinese hamster ovary cells expressing mutant EGFRs confirmed that they were present on the cell surface at levels approaching that of the wild-type receptor. Although tyrosine phosphorylation of most mutants was markedly induced by EGF, a cluster mutation (mt25) containing four alanine substitutions in the span of residues 521-527 failed to respond. EGF-induced tyrosine phosphorylation of an alternative mutant (DeltaEN) with amino acids 518-589 deleted was also greatly diminished. Larger doses of EGF or heparin-binding EGF induced only weak tyrosine phosphorylation of mt25, whereas the response to transforming growth factor-alpha was undetectable. These results suggest that mt25 might be defective with respect to either ligand binding or receptor dimerization. Quantitative analyses showed that binding of (125)I-EGF to mt25 and DeltaEN was reduced to near background levels, whereas binding of EGF to other cluster mutants was reduced 60-70% compared with wild-type levels. Among the mutants, only mt25 and DeltaEN failed to form homodimers or to transphosphorylate HER2/Neu in response to EGF treatment. Collectively, our results are the first to provide direct evidence that discrete subdomain IV residues are required for normal binding of EGF family ligands. Significantly, they were obtained with the full-length receptor in vivo, rather than a soluble truncated receptor, which has been frequently used for structure/function studies of the EGFR extracellular region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号