首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogeographic patterns of many taxa are explained by Pleistocene glaciation. The temperate rainforests within the Pacific Northwest of North America provide an excellent example of this phenomenon, and competing phylogenetic hypotheses exist regarding the number of Pleistocene refugia influencing genetic variation of endemic organisms. One such endemic is the Pacific giant salamander, Dicamptodon tenebrosus. In this study, we estimate this species' phylogeny and use a coalescent modeling approach to test five hypotheses concerning the number, location and divergence times of purported Pleistocene refugia. Single refugium hypotheses include: a northern refugium in the Columbia River Valley and a southern refugium in the Klamath-Siskiyou Mountains. Dual refugia hypotheses include these same refugia but separated at varying times: last glacial maximum (20,000 years ago), mid-Pleistocene (800,000 years ago) and early Pleistocene (1.7 million years ago). Phylogenetic analyses and inferences from nested clade analysis reveal distinct northern and southern lineages expanding from the Columbia River Valley and the Klamath-Siskiyou Mountains, respectively. Results of coalescent simulations reject both single refugium hypotheses and the hypothesis of dual refugia with a separation date in the late Pleistocene but not hypotheses predicting dual refugia with separation in early or mid-Pleistocene. Estimates of time since divergence between northern and southern lineages also indicate separation since early to mid-Pleistocene. Tests for expanding populations using mismatch distributions and 'g' distributions reveal demographic growth in the northern and southern lineages. The combination of these results provides strong evidence that this species was restricted into, and subsequently expanded from, at least two Pleistocene refugia in the Pacific Northwest.  相似文献   

2.
The seaweed Fucus serratus is hypothesized to have evolved in the North Atlantic and present populations are thought to reflect recolonization from a southern refugium since the last glacial maximum 18 000-20 000 years bp. We examined genetic structure across several spatial scales by analysing seven microsatellite loci in populations collected from 21 localities throughout the species' range. Spatial auto-correlation analysis of seven microsatellite loci revealed no evidence for spatial clustering of alleles on a scale of 100 m despite limited gamete dispersal in F. serratus of approximately 2 m from parental individuals. Pairwise theta analysis suggested that the minimal panmictic unit for F. serratus was between 0.5 and 2 km. Isolation by distance was significant along some contiguous coastlines. Population differentiation was strong within the Skagerrak-Kattegat-Baltic Seas (SKB) (global theta= 0.17) despite a short history of approximately 7500 years. A neighbour-joining tree based on Reynold's distances computed from the microsatellite data revealed a central assemblage of populations on the Brittany Peninsula surrounded by four well-supported clusters consisting of the SKB, the North Sea (Ireland, Helgoland), and two populations from the northern Spanish coast. Samples from Iceland and Nova Scotia were most closely aligned with northwest Sweden and Brittany, respectively. When sample sizes were standardized (N = 41), allelic diversity was twofold higher for Brittany populations than for populations to the north and threefold higher than southern populations. The Brittany region may be a refugium or a recolonized area, whereas the Spanish populations most likely reflect present-day edge populations that have undergone repeated bottlenecks as a consequence of thermally induced cycles of recolonization and extinction.  相似文献   

3.
Recurring glacial cycles through the Quaternary period drastically altered the size and distribution of natural populations of North American flora and fauna. The “southerly refugia model” has been the longstanding framework for testing the effects of glaciation on contemporary genetic patterns; however, insights from ancient DNA have contributed to the reconstruction of more complex histories for some species. The American badger, Taxidea taxus, provides an interesting species for exploring the genetic legacy of glacial history, having been hypothesized to have postglacially emerged from a single, southerly refugium to recolonize northern latitudes. However, previous studies have lacked genetic sampling from areas where distinct glacial refugia have been hypothesized, including the Pacific Northwest and American Far North (Yukon, Alaska). In order to further investigate the phylogeographic history of American badgers, we collected mitochondrial DNA sequence data from ancient subfossil material collected within the historical range (Alaska, Yukon) and combined them with new and previously published data from across the species' contemporary distribution (n = 1,207). We reconstructed a mostly unresolved phylogenetic tree and star‐like haplotype network indicative of emergence from a largely panmictic glacial refugium and recent population expansion, the latter further punctuated by significantly negative Tajima's D and Fu's Fs values. Although directionality of migration cannot be unequivocally inferred, the moderate to high levels of genetic variation exhibited by American badgers, alongside the low frequency of haplotypes with indels in the Midwest, suggest a potential recolonization into central North America after the hypothesized ice‐free corridor reopened ~13,000 years ago. Overall, the expanded reconstruction of phylogeographic history of American badgers offers a broader understanding of contemporary range‐wide patterns and identifies unique genetic units that can likely be used to inform conservation of at‐risk populations at the northern periphery.  相似文献   

4.
We studied the phylogeography of alder buckthorn (Frangula alnus), a bird-dispersed shrub or small tree distributed over most of Europe and West Asia and present in three of the four main refugia of West Palaearctic temperate woody plants: the Iberian Peninsula, the Balkans and Anatolia. A total of 78 populations from 21 countries were analysed for chloroplast DNA variation using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and 21 different haplotypes were distinguished. We found a very strong overall population differentiation (GST = 0.81) and phylogeographical structure, and a sharp contrast between the haplotype-rich refugia and the almost completely uniform area of postglacial colonization. The haplotype network comprises three lineages made up of haplotypes from the Iberian Peninsula, Anatolia with the Caucasus, and temperate Europe. The Iberian and the Anatolian branches represent parts of a major lineage that spans over the whole northern Mediterranean Basin and some neighbouring areas and probably dates back to the Tertiary. Many haplotypes of this lineage are distributed locally and most populations are fixed for a single haplotype; these populations have apparently been very stable since their establishment, experiencing negligible gene flow and few mutations. The temperate European lineage consists of one very widespread and abundant plus six locally distributed haplotypes. Four of them are located in Southeast Europe, the putative refugium of all extant temperate European populations. Contrary to populations from Iberia and Anatolia, F. alnus populations from the southeastern European refugium have most genetic variation within populations. Bird-mediated seed dispersal has apparently allowed not only a very rapid postglacial expansion of F. alnus but also subsequent regular seed exchanges between populations of the largely continuous species range in temperate Europe. In contrast, the disjunct F. alnus populations persisting in Mediterranean mountain ranges seem to have experienced little gene flow and have therefore accumulated a high degree of differentiation, even at short distances. Populations from the southern parts of the glacial refugia have contributed little to the postglacial recolonization of Europe, but their long-term historical continuity has allowed them to maintain a unique store of genetic variation.  相似文献   

5.
Current understanding of the postglacial colonization of Nearctic and Palearctic species relies heavily on inferences drawn from the phylogeographic analysis of contemporary generic variants. Modern postglacial populations are supposed to be representative of their Pleistocene ancestors, and their current distribution is assumed to reflect the different colonization success and dispersal patterns of refugial lineages. Yet, testing of phylogeographic models against ancestral genomes from glacial refugia has rarely been possible. Here we compare ND1 mitochondrial DNA variation in late Pleistocene (16,000-40,000 years before present), historical and contemporary Atlantic salmon (Salmo salar) populations from northern Spain and other regions of western Europe. Our study demonstrates the presence of Atlantic salmon in the Iberian glacial refugium during the last 40,000 years and points to the Iberian Peninsula as the likely source of the most common haplotype within the Atlantic lineage in Europe. However, our findings also suggest that there may have been significant changes in the genetic structure of the Iberian refugial stock since the last ice age, and question whether modern populations in refugial areas are representative of ice age populations. A common haplotype that persisted in the Iberian Peninsula during the Pleistocene last glacial maximum is now extremely rare or absent from European rivers, highlighting the need for caution when making phylogeographic inferences about the origin and distribution of modern genetic types.  相似文献   

6.
The glacial refugium hypothesis (GRH) proposes that glaciers promoted differentiation and generation of intraspecific diversity by isolating populations in ice-free refugia. We tested three predictions of this hypothesis for the evolutionary divergence of rock ptarmigan (Lagopus mutus) during the Wisconsin glaciation of the late Pleistocene. To do this, we examined subspecies distributions, population genetic structure, and phylogenetic relationships in 26 populations across North America and the Bering Sea region. First, we analyzed sequence variation in the mitochondrial control region, in a nuclear intron (Gapdh), and in an internal transcribed spacer (ITS1). Control region sequences of 154 rock ptarmigan revealed strong population and phylogeographic structure. Variation in intron sequences of 114 rock ptarmigan also revealed significant population structure compatible with results for the control region. Rock ptarmigan were invariant for ITS1. Second, we show that five known Nearctic refugia and an Icelandic refugium are concordant with the current distribution of morphologically distinct subspecies; five of these six refugia are geographically concordant with the distribution of closely related control region haplotypes. Third, our estimates of the time since phylogenetic lineages diverged predated the last glacial maximum for all but two lineages. In addition, all lines of evidence suggest that two unknown refugia in the Bering Sea region supported rock ptarmigan during the Wisconsin glaciation. Overall, our results are most consistent with the hypothesis that isolated populations of rock ptarmigan diverged in multiple refugia during the Wisconsin and that geographic variation reflects patterns of recolonization of the Nearctic after the ice receded. The GRH may therefore offer the most plausible explanation for similar biogeographic patterns in a variety of Nearctic vertebrates.  相似文献   

7.
Broad‐scale plastid (chloroplast) DNA studies of beech (Fagus sylvatica) populations suggest the existence of glacial refugia and introgression zones in south‐eastern Europe. We choose a possible refugium of beech in northern Greece, Mt. Paggeo, which hosts a private plastid haplotype for beech, to conduct a fine‐scale genetic study. We attempt to confirm or reject the hypothesis of the existence of a small‐scale refugium and to gain an understanding of the ecological and topographical factors affecting the spatial distribution of plastid haplotypes in the area. Our results reveal a high haplotype diversity on Mt. Paggeo, but the overall distribution of haplotypes shows no significant correlation with the ecological characteristics of the beech forests. However, the private haplotype is found at high frequencies in beech forests located in or near ravines, having a high spatial overlap with a relict vegetation type occurring in ecological conditions found mainly in ravines. This result emphasizes the importance of topography in the existence of glacial refugia in the wider area. Furthermore, haplotypes originating from two more widespread beech lineages in Greece are found on Mt. Paggeo, indicating a possible mixing of populations originating from a local refugium with populations from remote refugia that possibly migrated into the area after the last glaciation. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 516–528.  相似文献   

8.
Phylogeography is often used to investigate the effects of glacial cycles on current genetic structure of various plant and animal species. This approach can also identify the number and location of glacial refugia as well as the recolonization routes from those refugia to the current locations. To identify the location of glacial refugia of the Yellow‐spotted mountain newt, Neurergus derjugini, we employed phylogeography patterns and genetic variability of this species by analyzing partial ND4 sequences (867 bp) of 67 specimens from 15 sampling localities from the whole species range in Iran and Iraq. Phylogenetic trees concordant with haplotype networks showed a clear genetic structure among populations as three groups corresponding to the populations in the north, center, and south. Evolutionary ages of clades north and south ranging from 0.15 to 0.17 Myr, while the oldest clade is the central clade, corresponding to 0.32 Myr. Bayesian skyline plots of population size change through time show a relatively slight increase until about 25 kyr (around the last glacial maximum) and a decline of population size about 2.5 kyr. The presence of geographically structured clades in north, center, and south sections of the species range signifies the disjunct populations that have emerged in three different refugium. This study illustrates the importance of the effect of previous glacial cycles in shaping the genetic structure of mountain species in the Zagros range. These areas are important in terms of long‐term species persistence and therefore valuable areas for conservation of biodiversity.  相似文献   

9.
Nested clade analysis was applied to cytochrome b restriction site data previously obtained on 20 natural populations of the European rabbit across the Iberian Peninsula to test the hypothesis of postglacial dispersal from two main refugia, one in the northeast and the other in the southwest. Apart from historical fragmentation that resulted in geographic discontinuity of two distinct mitochondrial DNA (mtDNA) clades A and B, patterns of haplotype genetic variability have been shaped mostly by restricted gene flow via isolation by distance. The distribution of tip versus interior haplotypes suggests that dispersal occurred from both the southwestern and northeastern groups. Dispersal from the southwest had a north and northwest direction, whereas from the northeast it had mostly a western and southern orientation, with subsequent overlap in a southeastern-northwestern axis across the Iberian Peninsula. The analysis of the pairwise mismatch distribution of a 179-181-bp fragment of the mtDNA control region, for seven of those populations, further supports the idea that major patterns of dispersal were in the direction of central Iberia. Additionally, rabbit populations do not show signs of any significant loss of genetic diversity in the recent past, implying that they maintained large population sizes and structure throughout the ice ages. This is congruent with the fact that the Iberian Peninsula was itself a glacial refugium during Quaternary ice ages. Nonetheless, climatic oscillations of this period, although certainly milder than in northern Europe, were sufficient to affect the range distributions of Iberian organisms.  相似文献   

10.
Numerous studies have shown that the genetic diversity of species inhabiting temperate regions has been shaped by changes in their distributions during the Quaternary climatic oscillations. For some species, the genetic distinctness of isolated populations is maintained during secondary contact, while for others, admixture is frequently observed. For the winter moth (Operophtera brumata), an important defoliator of oak forests across Europe and northern Africa, we previously determined that contemporary populations correspond to genetic diversity obtained during the last glacial maximum (LGM) through the use of refugia in the Iberian and Aegean peninsulas, and to a lesser extent the Caucasus region. Missing from this sampling were populations from the Italian peninsula and from North Africa, both regions known to have played important roles as glacial refugia for other species. Therefore, we genotyped field‐collected winter moth individuals from southern Italy and northwestern Tunisia—the latter a region where severe oak forest defoliation by winter moth has recently been reported—using polymorphic microsatellite. We reconstructed the genetic relationships of these populations in comparison to moths previously sampled from the Iberian and Aegean peninsulas, the Caucasus region, and western Europe using genetic distance, Bayesian clustering, and approximate Bayesian computation (ABC) methods. Our results indicate that both the southern Italian and the Tunisian populations are genetically distinct from other sampled populations, and likely originated in their respective refugium during the LGM after diverging from a population that eventually settled in the Iberian refugium. These suggest that winter moth populations persisted in at least five Mediterranean LGM refugia. Finally, we comment that outbreaks by winter moth in northwestern Tunisia are not the result of a recent introduction of a nonnative species, but rather are most likely due to land use or environmental changes.  相似文献   

11.
The molecular phylogeography of the viperine snake, Natrix maura (Linnaeus, 1758), was investigated using complete sequences of the mitochondrial cytochrome b gene and genomic ISSR-PCR fingerprinting. In a total of 120 samples, 44 unique cytochrome b haplotypes were found which defined three major genetic lineages associated with samples from Morocco, Tunisia and Europe, respectively. The same lineages were supported by nuclear data. A possible fourth lineage exists in southern Spain. Genetic distances of cytochrome b sequences between the three main lineages were in the range of 3.9–5.6%, suggesting independent evolution since the early Pliocene. Distinction of the three major lineages at the subspecies or species level is discussed to account taxonomically for the high intraspecific variation in the viperine snake. A more detailed analysis of the European samples based on genetic diversity indices and a network reconstruction suggests a complex Pleistocene history for the viperine snake in Europe. Clear differentiation was found between populations south and north of the central Iberian mountain ranges, suggesting Pleistocene glacial refugia both in the southern and northern Iberian peninsula. In the south, genetic diversity was associated with the main river valleys, whereas northern haplotypes were more broadly distributed, indicating gene flow or postglacial range expansions. Unexpectedly high levels of genetic variation in southeastern France and northwestern Italy would be compatible with the hypothesis of a glacial refugium north of the Pyrenees or in Italy. However, due to the dependence of N. maura on warm climates, the assumption of a northern refugium seems unwarranted. We believe that further sampling in northern Spain is likely to reveal genetically diverse populations which could have served as sources for postglacial recolonization of France and Italy.  相似文献   

12.
The biogeographical distribution of brown trout mitochondrial DNA haplotypes throughout the Iberian Peninsula was established by polymerase chain reaction-restriction fragment polymorphism analysis. The study of 507 specimens from 58 localities representing eight widely separated Atlantic-slope (north and west Iberian coasts) and six Mediterranean drainage systems served to identify five main groups of mitochondrial haplotypes: (i) haplotypes corresponding to non-native, hatchery-reared brown trout that were widely distributed but also found in wild populations of northern Spain (Cantabrian slope); (ii) a widespread Atlantic haplotype group; (iii) a haplotype restricted to the Duero Basin; (iv) a haplotype shown by southern Iberian populations; and (v) a Mediterranean haplotype. The Iberian distribution of these haplotypes reflects both the current fishery management policy of introducing non-native brown trout, and Messinian palaeobiogeography. Our findings complement and extend previous allozyme studies on Iberian brown trout and improve present knowledge of glacial refugia and postglacial movement of brown trout lineages.  相似文献   

13.
Mitochondrial haplotype diversity in seven Portuguese populations of brown trout, Salmo trutta L., was investigated by sequencing the 5' end of the mitochondrial DNA (mtDNA) control region. Five new haplotypes were described for this species, each two to three mutational steps distant from the common north Atlantic haplotype. Significant population subdivision of mtDNA haplotypes was also apparent. Based on these results, as well as on published data describing the distribution of both mtDNA haplotypes and allozyme alleles throughout Europe, the postglacial recolonization of northern Europe was re-evaluated. It is argued that the available data do not support the contribution of two major glacial refugia (southwest Atlantic and Ponto-Caspian Basin) to this postglacial recolonization, as proposed in a recently published model. The unique genetic architecture of Portuguese brown trout within the Atlantic-basin clade of this species represents a highly valuable genetic resource that should be protected from introgression with nonendemic strains of hatchery fish.  相似文献   

14.
Calcareous grasslands belong to the most diverse, endangered habitats in Europe, but there is still insufficient information about the origin of the plant species related to these grasslands. In order to illuminate this question, we chose for our study the representative grassland species Hippocrepis comosa (Horseshoe vetch). Based on species distribution modeling and molecular markers, we identified the glacial refugia and the postglacial migration routes of the species to Central Europe. We clearly demonstrate that H. comosa followed a latitudinal and due to its oceanity also a longitudinal gradient during the last glacial maximum (LGM), restricting the species to southern refugia situated on the Peninsulas of Iberia, the Balkans, and Italy during the last glaciation. However, we also found evidence for cryptic northern refugia in the UK, the Alps, and Central Germany. Both species distribution modeling and molecular markers underline that refugia of temperate, oceanic species such as H. comosa must not be exclusively located in southern but also in western of parts of Europe. The analysis showed a distinct separation of the southern refugia into a western cluster embracing Iberia and an eastern group including the Balkans and Italy, which determined the postglacial recolonization of Central Europe. At the end of the LGM, H. comosa seems to have expanded from the Iberian refugium, to Central and Northern Europe, including the UK, Belgium, and Germany.  相似文献   

15.
The phylogeographic pattern of mitochondrial DNA variation in water voles (Arvicola terrestris) from 57 localities across the United Kingdom and representative samples from Spain, France, Switzerland and Finland was determined from sequence variation in the central portion of the control region. Twenty-seven different haplotypes were resolved which formed two distinct phylogenetic clades. This major division separated haplotypes found in Scotland from those found in England and Wales. Nested clade analysis of haplotypes indicated that such a division was a consequence of allopatric fragmentation. The haplotypes found in Switzerland, France and Spain clustered with Scottish haplotypes, whereas the haplotype from Finland clustered with the English/Welsh haplotypes. These patterns indicate that contemporary Scottish populations are derived from an Iberian glacial refugium, whereas English and Welsh populations are derived from an eastern European refugium. As such, the postglacial recolonization of the United Kingdom must have involved two colonization events, either in different localities with no subsequent contact, or as two waves separated over time, with the second wave of colonizers displacing the first. An analysis of molecular variance (AMOVA) identified significant population genetic divergence within both the major clades, indicative of restricted gene flow and regional population isolation. The implications of both phylogeographical and population genetic structure are discussed in context with the conservation of water voles in Britain.  相似文献   

16.
The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.  相似文献   

17.
Myotis lucifugus, once among the most widespread and common bats in North America, has been forecast to be extirpated east of the Rockies in as few as 16 years by the spread of white-nose syndrome. Recent genetic research has demonstrated that this species is paraphyletic and part of a broader species complex; however, only one lineage (Myotis lucifugus lucifugus [M. l. lucifugus]) is present in eastern North America. I used molecular tools and niche modeling to validate this and investigate the role that historical biogeography has played in the phylogenetic and population genetic structure of this species to determine if the eastern subspecies represents an evolutionarily distinct population.To establish the genetic structure within M. l. lucifugus, I densely sampled maternity colonies in Minnesota and sequenced 182 individuals for a portion of cytochrome b. Phylogenetic reconstruction and a haplotype network were used to infer the relationships among mitochondrial haplotypes. Population growth statistics were calculated to determine if there was evidence of significant expansion, and an environmental niche model (ENM) was constructed based on conditions during the last glacial maximum (LGM) to illustrate potential glacial refugia. All individuals derived from a single mitochondrial lineage. Genetic evidence points to population growth starting approximately 18 kya. ENM results show that there was likely a single large southern refugium extending across the southeastern United States and possibly several isolated refugia in western North America. Myotis lucifugus lucifugus likely maintained both a large range and a large population during the peaks of the glacial cycles, and its population appears to have expanded following the retreat of the Laurentide ice sheet. This imperiled lineage likely diverged in isolation from other members of the M. lucifugus/western long-eared Myotis during the Pleistocene.  相似文献   

18.
Late- and Post-Glacial history of the Mustelidae in Europe   总被引:3,自引:0,他引:3  
1. Analyses of the subfossil records of mustelid species in Europe indicate specific differences in the pattern of temporal and spatial recolonization of central Europe after the maximum glaciation of the last glacial period. 2. For Meles meles, Martes martes and (with some reservations) Mustela putorius it can be seen that the populations were separated in several glacial refugia during the maximum glaciation of the Weichselian. In contrast, the European population of Lutra lutra was restricted to a single glacial refuge, which had not been clearly localized until now. 3. Besides the known glacial refugia of the Iberian Peninsula, Italian Peninsula and the Balkans, there is evidence of possible additional glacial refugia for mustelids near the Carpathians, in western Moldova and in the northern Pontic region. 4. Gulo gulo, Mustela nivalis, and Mustela erminea show adaptations for survival in Pleistocene conditions, but they were historically also distributed in the warmer areas of southern Europe. 5. Among the more thermophilic mustelid species, Mustela putorius is likely to have been the earliest immigrant following the maximum glaciation. Meles meles has been recorded in comparably early times and also seems to be relatively tolerant of climatic extremes. It is clear that Martes martes had already arrived in central Europe during the Allerød, in connection with the recolonization by birch and pine woods. Lutra lutra, by contrast, seems to have been an absolute Holocene immigrant.  相似文献   

19.
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.  相似文献   

20.
Glacial and postglacial processes are known to be important determinants of contemporary population structuring for many species. In Europe, refugia in the Italian, Balkan and Iberian peninsulas are believed to be the main sources of species colonising northern Europe after the glacial retreat; however, there is increasing evidence of small, cryptic refugia existing north of these for many cold-tolerant species. This study examined the glacial history of Atlantic salmon in western Europe using two independent classes of molecular markers, microsatellites (nuclear) and mitochondrial DNA variation. Alongside the well-documented refuge in the Iberian Peninsula, evidence for a cryptic refuge in northwest France is also presented. Critically, methods utilised to estimate divergence times between the refugia indicated that salmon in these two regions had diverged a long time before the last glacial maximum; coalescence analysis (as implemented in the program IMa2) estimated divergence times at around 60 000 years before present. Through the examination of haplotype frequencies, previously glaciated areas of northwest Europe, that is, Britain and Ireland, appear to have been colonised from salmon expanding out of both refugia, with the southwest of England being the primary contact zone and exhibiting the highest genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号