共查询到20条相似文献,搜索用时 15 毫秒
1.
Using glutaric dialdehyde, the muscle proteins myosin, actin, actomyosin and heavy meromyosin subfragment-1 (S-1) have been immobilized on capron fibers. The ATPase activity of myosin and its capability to interact with actin have been preserved whereas the ATPase activity of its subfragment decreased significnatly. Immobilization on capron fibers changes the pH dependence of the ATPase activity of myosin and of S-1 shifting the maximum towards the acid zone (pH 5.5) and increases the thermal stability of the enzyme. Calcium ions produce a stimulatory effect on ATPase; Mg2+ions yield no effect on myosin and S-1 but enhance the activity in the case of immobilized actomyosin though to a lesser degree than the ions of Ca2+. Immobilized actin retains its ability to form actomyosin complex. 相似文献
2.
The soluble proteolytic fragments of myosin, heavy meromyosin and subfragment 1, were prepared with varying amounts of the proteases chymotrypsin and papain, respectively. The actin-activated ATP hydrolysis were examined with oxygen-18-labeled ATP. Each preparation of heavy meromyosin and subfragments 1 displayed two pathways of ATP hydrolysis, called respectively the high and low oxygen exchange mechanisms. The contributions of the two mechanisms were found to be sensitive to the potassium chloride concentration. With a fixed concentration of actin (300 microM), the contribution of the low-exchange mechanism decreased from a maximum of 90% of the ATP hydrolysis at 10 and 20 mM KCl to 12% at 180 mM KCl. The results suggested that the two mechanisms were competing reactions catalyzed by a single species of myosin. 相似文献
3.
A method is described for obtaining brain myosin that shows significant actin activation, after phosphorylation with chicken gizzard myosin light chain kinase. Myosin with this activity could be obtained only via the initial purification of brain actomyosin. The latter complex, isolated by a method similar to that used for smooth muscle, contained actin, myosin, tropomyosin of the non-muscle type and another actin-binding protein of approximately 100,000 daltons. From the presence of a specific myosin light chain kinase and phosphatase in brain tissue it is suggested that the regulation of actin-myosin interaction operates via phosphorylation and dephosphorylation of myosin. 相似文献
4.
5.
6.
Summary Myosin and actin were localized by indirect immunofluorescence microscopy using specific antibodies prepared in rabbits against highly purified gizzard myosin and actin. A strong fluorescence staining with both antibodies was observed in rat corneal epithelial cells, anterior lens epithelial cells, rod inner segments, and in rat and frog pigment epithelial cells. The immunohistochemical localization of myosin in corneal epithelial cells was further supported by the electrophoretic and immunological identification of smooth muscle type myosin heavy chain in pure corneal epithelial abrasions. Electron-microscopic observations revealed a clear correlation between staining with actin antibodies and the presence of numerous thin cytoplasmic filaments (50–80 Å in diameter). The functional and biochemical nature of 90–110 Å filaments occurring in corneal and lens epithelial cells, as well as the ultrastructural localization of myosin in ocular nonmuscle cells under study remains obscure. 相似文献
7.
Actin and myosin were immobilized by coupling them to agarose matrices. Both immobilized G-actin and immobilized myosin retain most of the properties of the proteins in free solution and are reliable over long periods of time. Sepharose-F-actin, under the conditions used in this study, has proved unstable and variable in its properties. Sepharose-G-actin columns were used to bind heavy meromyosin and myosin subfragment 1 specifically and reversibly. The interaction involved is sensitive to variation in ionic strength, such that myosin itself is not retained by the columns at the high salt concentration required for its complete solubilization. Myosin, rendered soluble at low ionic strength by polyalanylation, will interact successfully with the immobilized actin. The latter can distinguish between active and inactive fractions of the proteolytic and polyalanyl myosin derivatives, and was used in the preparation of these molecules. The complexes formed between the myosin derivatives and Sepharose-G-actin can be dissociated by low concentrations of ATP, ADP and pyrophosphate in both the presence and the absence of Mg2+. The G-actin columns were used to evaluate the results of chemical modifications of myosin subfragments on their interactions with actin. F-Actin in free solution is bound specifically and reversibly to columns of insolubilized myosin. Thus, with elution by either ATP or pyrophosphate, actin has been purified in one step from extracts of acetone-dried muscle powder. 相似文献
8.
9.
10.
Distribution of actin and myosin in muscle and non-muscle cells 总被引:2,自引:0,他引:2
Dr. B. H. Toh A. Yildiz J. Sotelo O. Osung E. J. Holborow A. Fairfax 《Cell and tissue research》1979,199(1):117-126
Summary Specific anti-actin and anti-myosin antibodies were shown to react in single and double immunofluorescence sandwich tests with identical sites in non-muscle cells in frozen sections of tissues and in cultured cells. In tissues, both antibodies reacted with liver cell membranes, parts of renal glomeruli, brush borders and peritubular fibrils of renal tubules, brain synaptic junctions, and membranes of lymphoid cells in thymic medulla, lymph nodes and spleen. Both antibodies reacted strongly with long parallel cytoplasmic fibrils in cultured fibroblasts, and with disrupted fibrils in cytochalasin-B treated cells. In neuroblastoma cells both antibodies gave prominent staining of growth cones and microspikes. The observation that the distribution of myosin parallels that of actin in non-muscle cells argues strongly in favour of a functional interaction between the two molecules in the generation of contractile activity in nonmuscle cells.The authors thank Dr. M. Owen, National Institute of Medical Research, Mill Hill, for the gift of rabbit anti-actin antibodyOn sabbatical leave from Monash University, and supported by a Commonwealth Medical FellowshipThe Brompton Hospital, London 相似文献
11.
Abe A Saeki K Yasunaga T Wakabayashi T 《Biochemical and biophysical research communications》2000,268(1):14-19
The N-terminus of all actins so far studied is acetylated. Although the pathways of acetylation have been well studied, its functional importance has been unclear. A negative charge cluster in the actin N-terminal region is shown to be important for the function of actomyosin. Acetylation at the N-terminus removes a positive charge and increases the amount of net negative charges in the N-terminal region. This may augment the role of the negative charge cluster. To examine this possibility, actin with a nonacetylated N-terminus (nonacetylated actin) was produced. The nonacetylated actin polymerized and depolymerized normally. In actin-activated heavy meromyosin ATPase assays, the nonacetylated actin showed higher K(app) without significantly changing V(max), compared with those of wild-type actin. This is in contrast to the effect of the N-terminal negative charge cluster, which increases V(max) without changing K(app). These results indicate that the acetylation at the N-terminus of actin strengthens weak actomyosin interaction. 相似文献
12.
13.
14.
Interaction of globular actin with myosin subfragments 总被引:9,自引:0,他引:9
15.
Rates of proteolytic cleavage of myosin subfragment 1 were measured in the absence and presence of different amounts of actin. The rates of tryptic digestion at the 50K/20K junction and papain digestion at the 25K/50K junction of the myosin head were progressively inhibited with increasing substoichiometric molar ratios of actin to myosin subfragment 1. The percentage inhibitions of digestion reactions corresponded precisely to the molar compositions of actin-subfragment 1 solutions and demonstrated that equimolar complexes of these proteins were responsible for the observed changes in the proteolysis of myosin heads. 相似文献
16.
17.
The binding of actin to myosin containing phosphorylated and dephosphorylated light chains (LC2) was investigated by studying the influence of actin on Mg2+- and K+-stimulated ATPase of phosphorylated and dephosphorylated myosin and by comparing the influence of PPi on actomyosin formed from pure actin and phosphorylated or dephosphorylated myosin. The concentration of actin producing inhibition of one half of myosin K+-ATPase activity was 4.1 micro M and 7.7 micro M for phosphorylated and dephosphorylated myosin, respectively. Actomyosin formed from dephosphorylated myosin dissociated at lower PPi concentration than did that from the phosphorylated form. The extrapolated values of Km obtained from studies of the influence of actin on Mg2+-ATPase activity of dephosphorylated myosin were about twice as high as for the phosphorylated form. Thus, the affinity of phosphorylated myosin for actin was significantly higher under conditions studied. 相似文献
18.
Subtilisin cleavage of actin inhibits in vitro sliding movement of actin filaments over myosin 总被引:6,自引:0,他引:6 下载免费PDF全文
D H Schwyter S J Kron Y Y Toyoshima J A Spudich E Reisler 《The Journal of cell biology》1990,111(2):465-470
Subtilisin cleaved actin was shown to retain several properties of intact actin including the binding of heavy meromyosin (HMM), the dissociation from HMM by ATP, and the activation of HMM ATPase activity. Similar Vmax but different Km values were obtained for acto-HMM ATPase with the cleaved and intact actins. The ATPase activity of HMM stimulated by copolymers of intact and cleaved actin showed a linear dependence on the fraction of intact actin in the copolymer. The most important difference between the intact and cleaved actin was observed in an in vitro motility assay for actin sliding movement over an HMM coated surface. Only 30% of the cleaved actin filaments appeared mobile in this assay and moreover, the velocity of the mobile filaments was approximately 30% that of intact actin filaments. These results suggest that the motility of actin filaments can be uncoupled from the activation of myosin ATPase activity and is dependent on the structural integrity of actin and perhaps, dynamic changes in the actin molecule. 相似文献
19.
Kovar DR 《Current biology : CB》2007,17(7):R244-R247
A new study has found that retrograde flow of budding yeast actin cables is facilitated by myosin II but is inhibited by a specific tropomyosin isoform (Tpm2p). Budding yeast therefore contains a minimal component system for elucidating the mechanistic details of retrograde actin flow. 相似文献
20.
Interaction of actin from chicken gizzard and from rabbit skeletal muscle with rabbit skeletal muscle myosin was compared by measuring the rate of superprecipitation, the activation of the Mg-ATPase and inhibition of K-ATPase activity of myosin and heavy meromyosin, and determination of binding of heavy meromyosin in the absence of ATP. Both the rate of superprecipitation of the hybrid actomyosin and the activation of myosin ATPase by gizzard actin are lower than those obtained with skeletal muscle actin. The activation of myosin Mg-ATPase by the two actin species also shows different dependence on substrate concentration: with gizzard actin the substrate inhibition starts at lower ATP concentration. The double-reciprocal plots of the Mg-ATPase activity of heavy meromyosin versus actin concentration yield the same value of the extrapolated ATPase activity at infinite actin concentration (V) for the two actins and nearly double the actin concentration needed to produce half-maximal activation (Kapp) in the case of gizzard actin. A corresponding difference in the abilities of the two actin species to inhibit the K-ATPase activity of heavy meromyosin in the absence of divalent cations was also observed. The results are discussed in terms of the effect of substitutions in the amino acid sequence of gizzard and skeletal muscle actins on their interaction with myosin. 相似文献