首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most-severe form of congenital generalized lipodystrophy (CGL) is caused by mutations in BSCL2/seipin. Seipin is a homo-oligomeric integral membrane protein in the endoplasmic reticulum that concentrates at junctions with cytoplasmic lipid droplets (LDs). While null mutations in seipin are responsible for lipodystrophy, dominant mutations cause peripheral neuropathy and other nervous system pathologies. We first review the clinical aspects of CGL and the discovery of the responsible genetic loci. The structure of seipin, its normal isoforms, and mutations found in patients are then presented. While the function of seipin is not clear, seipin gene manipulation in yeast, flies, mice, and human cells has recently yielded a trove of information that suggests roles in lipid metabolism and LD assembly and maintenance. A model is presented that attempts to bridge these new data to understand the role of this fascinating protein.  相似文献   

2.
Seipin is an endoplasmic reticulum (ER) membrane protein implicated in lipid droplet (LD) biogenesis and mutated in severe congenital lipodystrophy (BSCL2). Here, we show that seipin is stably associated with nascent ER–LD contacts in human cells, typically via one mobile focal point per LD. Seipin appears critical for such contacts since ER–LD contacts were completely missing or morphologically aberrant in seipin knockout and BSCL2 patient cells. In parallel, LD mobility was increased and protein delivery from the ER to LDs to promote LD growth was decreased. Moreover, while growing LDs normally acquire lipid and protein constituents from the ER, this process was compromised in seipin‐deficient cells. In the absence of seipin, the initial synthesis of neutral lipids from exogenous fatty acid was normal, but fatty acid incorporation into neutral lipids in cells with pre‐existing LDs was impaired. Together, our data suggest that seipin helps to connect newly formed LDs to the ER and that by stabilizing ER–LD contacts seipin facilitates the incorporation of protein and lipid cargo into growing LDs in human cells.  相似文献   

3.
Nuclear lipid droplets (LDs) in hepatocytes are derived from precursors of very-low-density lipoprotein in the ER lumen, but it is not known how cells lacking the lipoprotein secretory function form nuclear LDs. Here, we show that the inner nuclear membrane (INM) of U2OS cells harbors triglyceride synthesis enzymes, including ACSL3, AGPAT2, GPAT3/GPAT4, and DGAT1/DGAT2, and generates nuclear LDs in situ. mTOR inhibition increases nuclear LDs by inducing the nuclear translocation of lipin-1 phosphatidic acid (PA) phosphatase. Seipin, a protein essential for normal cytoplasmic LD formation in the ER, is absent in the INM. Knockdown of seipin increases nuclear LDs and PA in the nucleus, whereas seipin overexpression decreases these. Seipin knockdown also up-regulates lipin-1β expression, and lipin-1 knockdown decreases the effect of seipin knockdown on nuclear LDs without affecting PA redistribution. These results indicate that seipin is not directly involved in nuclear LD formation but instead restrains it by affecting lipin-1 expression and intracellular PA distribution.  相似文献   

4.
Physical contact between organelles are widespread, in part to facilitate the shuttling of protein and lipid cargoes for cellular homeostasis. How do protein‐protein and protein‐lipid interactions shape organelle subdomains that constitute contact sites? The endoplasmic reticulum (ER) forms extensive contacts with multiple organelles, including lipid droplets (LDs) that are central to cellular fat storage and mobilization. Here, we focus on ER‐LD contacts that are highlighted by the conserved protein seipin, which promotes LD biogenesis and expansion. Seipin is enriched in ER tubules that form cage‐like structures around a subset of LDs. Such enrichment is strongly dependent on polyunsaturated and cyclopropane fatty acids. Based on these findings, we speculate on molecular events that lead to the formation of seipin‐positive peri‐LD cages in which protein movement is restricted. We hypothesize that asymmetric distribution of specific phospholipids distinguishes cage membrane tubules from the bulk ER.  相似文献   

5.
CGL (Congenital generalized lipodystrophy) is a genetic disorder characterized by near complete loss of adipose tissue along with increased ectopic fat storage in other organs including liver and muscle. Of the four CGL types, BSCL2 (Berardinelli–Seip Congenital lipodystrophy type 2), resulting from mutations in the BSCL2/seipin gene, exhibits the most severe lipodystrophic phenotype with loss of both metabolic and mechanical adipose depots. The majority of Seipin mutations cause C-terminal truncations, along with a handful of point mutations. Seipin localizes to the ER and is composed of a conserved region including a luminal loop and two transmembrane domains, plus cytosolic N- and C-termini. Animal models deficient in seipin recapitulate the human lipodystrophic phenotype. Cells isolated from seipin knockout mouse models also exhibit impaired adipogenesis. Mechanistically, seipin appears to function as a scaffolding protein to bring together interacting partners essential for lipid metabolism and LD (lipid droplet) formation during adipocyte development. Moreover, cell line and genetic studies indicate that seipin functions in a cell-autonomous manner. Here we will provide a brief overview of the genetic association of the CGLs, and focus on the current understanding of differential contributions of distinct seipin domains to lipid storage and adipogenesis. We will also discuss the roles of seipin-interacting partners, including lipin 1 and 14-3-3β, in mediating seipin-dependent regulation of cellular pathways such as actin cytoskeletal remodelling.  相似文献   

6.
Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.  相似文献   

7.
Cells store lipids as a reservoir of metabolic energy and membrane component precursors in organelles called lipid droplets (LDs). LD formation occurs in the endoplasmic reticulum (ER) at LD assembly complexes (LDAC), consisting of an oligomeric core of seipin and accessory proteins. LDACs determine the sites of LD formation and are required for this process to occur normally. Seipin oligomers form a cage-like structure in the membrane that may serve to facilitate the phase transition of neutral lipids in the membrane to form an oil droplet within the LDAC. Modeling suggests that, as the LD grows, seipin anchors it to the ER bilayer and conformational shifts of seipin transmembrane segments open the LDAC dome toward the cytoplasm, enabling the emerging LD to egress from the ER.  相似文献   

8.
Lipid droplets (LDs) are essential for cellular lipid homeostasis by storing diverse neutral lipids (NLs), such as triacylglycerol (TAG), steryl esters (SE), and retinyl esters (RE). A proper assembly of TAG-containing LDs at the ER requires Seipin, a conserved protein often mutated in lipodystrophies. Here, we show that the yeast Seipin Sei1 and its partner Ldb16 also promote the storage of other NL in LDs. Importantly, this role of Sei1/Ldb16 is evolutionarily conserved as expression of human-Seipin restored normal SE-containing LDs in yeast Seipin mutants. As in the case of TAG, the formation of SE-containing LDs requires interactions between hydroxyl-residues in human Seipin or yeast Ldb16 with NL carboxyl esters. These findings provide a universal mechanism for Seipin-mediated LD formation and suggest a model for how Seipin distinguishes NLs from aliphatic phospholipid acyl chains in the center of the membrane bilayer.  相似文献   

9.
Seipin is a disk-like oligomeric endoplasmic reticulum (ER) protein important for lipid droplet (LD) biogenesis and triacylglycerol (TAG) delivery to growing LDs. Here we show through biomolecular simulations bridged to experiments that seipin can trap TAGs in the ER bilayer via the luminal hydrophobic helices of the protomers delineating the inner opening of the seipin disk. This promotes the nanoscale sequestration of TAGs at a concentration that by itself is insufficient to induce TAG clustering in a lipid membrane. We identify Ser166 in the α3 helix as a favored TAG occupancy site and show that mutating it compromises the ability of seipin complexes to sequester TAG in silico and to promote TAG transfer to LDs in cells. While the S166D-seipin mutant colocalizes poorly with promethin, the association of nascent wild-type seipin complexes with promethin is promoted by TAGs. Together, these results suggest that seipin traps TAGs via its luminal hydrophobic helices, serving as a catalyst for seeding the TAG cluster from dissolved monomers inside the seipin ring, thereby generating a favorable promethin binding interface.

A combination of biomolecular simulations and experiments reveals that the disc-like oligomeric lipodystrophy protein seipin interacts with and traps triglycerides in the endoplasmic reticulum, thus facilitating the formation and growth of lipid droplets.  相似文献   

10.
Seipin is necessary for both adipogenesis and lipid droplet (LD) organization in nonadipose tissues; however, its molecular function is incompletely understood. Phenotypes in the seipin-null mutant of Saccharomyces cerevisiae include aberrant droplet morphology (endoplasmic reticulum–droplet clusters and size heterogeneity) and sensitivity of droplet size to changes in phospholipid synthesis. It has not been clear, however, whether seipin acts in initiation of droplet synthesis or at a later step. Here we utilize a system of de novo droplet formation to show that the absence of seipin results in a delay in droplet appearance with concomitant accumulation of neutral lipid in membranes. We also demonstrate that seipin is required for vectorial budding of droplets toward the cytoplasm. Furthermore, we find that the normal rate of droplet initiation depends on 14 amino acids at the amino terminus of seipin, deletion of which results in fewer, larger droplets that are consistent with a delay in initiation but are otherwise normal in morphology. Importantly, other functions of seipin, namely vectorial budding and resistance to inositol, are retained in this mutant. We conclude that seipin has dissectible roles in both promoting early LD initiation and in regulating LD morphology, supporting its importance in LD biogenesis.  相似文献   

11.
Cholesteryl ester (CE)-rich lipid droplets (LDs) accumulate in steroidogenic tissues under physiological conditions and constitute an important source of cholesterol as the precursor for the synthesis of all steroid hormones. The mechanisms specifically involved in CE-rich LD formation have not been directly studied and are assumed by most to occur in a fashion analogous to triacylglycerol-rich LDs. Seipin is an endoplasmic reticulum protein that forms oligomeric complexes at endoplasmic reticulum-LD contact sites, and seipin deficiency results in severe alterations in LD maturation and morphology as seen in Berardinelli-Seip congenital lipodystrophy type 2. While seipin is critical for triacylglycerol-rich LD formation, no studies have directly addressed whether seipin is important for CE-rich LD biogenesis. To address this issue, mice with deficient expression of seipin specifically in adrenal, testis, and ovary, steroidogenic tissues that accumulate CE-rich LDs under normal physiological conditions, were generated. We found that the steroidogenic-specific seipin-deficient mice displayed a marked reduction in LD and CE accumulation in the adrenals, demonstrating the pivotal role of seipin in CE-rich LD accumulation/formation. Moreover, the reduction in CE-rich LDs was associated with significant defects in adrenal and gonadal steroid hormone production that could not be completely reversed by addition of exogenous lipoprotein cholesterol. We conclude that seipin has a heretofore unappreciated role in intracellular cholesterol trafficking.  相似文献   

12.
Most cells store metabolic energy in lipid droplets (LDs). LDs are composed of a hydrophobic core, covered by a phospholipid monolayer, and functionalized by a specific set of proteins. Formation of LDs takes place in the endoplasmic reticulum (ER), where neutral lipid biosynthetic enzymes are located. Recent evidence indicate that this process is confined to specific ER subdomains, where proteins meet to initiate LD assembly. The lipodystrophy protein Seipin, is emerging as a major coordinator of LD biogenesis. Seipin forms a large oligomeric toroidal structure, which traps neutral lipids to promote LD nucleation. Here, we discuss the role of LD biogenesis factors that associate with Seipin to assemble functional LDs.  相似文献   

13.
Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.  相似文献   

14.
Berardinelli-Seip congenital lipodystrophy (BSCL) is a rare recessive disease characterized by near absence of adipose tissue and severe insulin resistance. In most cases, BSCL is due to loss-of-function mutations in the genes encoding either seipin of unknown function or 1-acyl-glycerol-3-phosphate O-acyltransferase 2 (AGPAT2) which catalyses the formation of phosphatidic acid from lysophosphatidic acid. We studied the lipid profile of lymphoblastoid cell-lines from 20 BSCL patients with null mutations in the genes encoding either seipin (n = 12) or AGPAT2 (n = 8) in comparison to nine control cell-lines. In seipin deficient cells, we observed alterations in the pattern of lipid droplets which were decreased in size and increased in number as compared to control cells. We also observed alterations in the triglycerides content as well as in the fatty acid composition from triglycerides and phosphatidylethanolamine, with an increased proportion of saturated fatty acids at the expense of the corresponding monounsaturated fatty acids, reflecting a defect in Δ9-desaturase activity. In AGPAT2 deficient cells, no specific alterations in lipid droplet pattern nor in fatty acid composition was observed but the cellular level of lysophosphatidic acid was increased as compared to that of control and seipin deficient cells. These results indicate that seipin like AGPAT2 is involved in lipid metabolism but exerts a different function. Seipin intervenes at a proximal step in triglycerides and phospholipids biosynthesis being involved in the pathway that links fatty acid Δ9 desaturation to lipid droplet formation. These findings provide new insights into how seipin deficiency causes severe lipodystrophy.  相似文献   

15.
The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin has been implicated in adipocyte differentiation, lipid droplet (LD) formation, and motor neuron development. However, the molecular function of seipin and its disease-causing mutants remains to be elucidated. Here, we characterize seipin and its mis-sense mutants: N88S/S90L (both linked to motoneuron disorders) and A212P (linked to lipodystrophy) in cultured mammalian cells. Knocking down seipin significantly increases oleate incorporation into triacylglycerol (TAG) and the steady state level of TAG, and induces the proliferation and clustering of small LDs. By contrast, overexpression of seipin reduces TAG synthesis, leading to decreased formation of LDs. Expression of the A212P mutant, however, had little effect on LD biogenesis. Surprisingly, expression of N88S or S90L causes the formation of many small LDs reminiscent of seipin deficient cells. This dominant-negative effect may be due to the N88S/S90L-induced formation of inclusions where wild-type seipin can be trapped. Importantly, coexpression of wild-type seipin and the N88S or S90L mutant can significantly reduce the formation of inclusions. Finally, we demonstrate that seipin can interact with itself and its mutant forms. Our results provide important insights into the biochemical characteristics of seipin and its mis-sense mutants, and suggest that seipin may function to inhibit lipogenesis.  相似文献   

16.
17.
The Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene encodes an integral membrane protein, called seipin, of unknown function localized to the endoplasmic reticulum of eukaryotic cells. Seipin is associated with the heterogeneous genetic disease BSCL2, and mutations in an N-glycosylation motif links the protein to two other disorders, autosomal-dominant distal hereditary motor neuropathy type V and Silver syndrome. Here, we report a topological study of seipin using an in vitro topology mapping assay. Our results suggest that the predominant form of seipin is 462 residues long and has an N(cyt)-C(cyt) orientation with a long luminal loop between the two transmembrane helices.  相似文献   

18.
Both the endoplasmic reticulum (ER) and lipid droplets (LDs) are key players in lipid handling. In addition to this functional connection, the two organelles are also tightly linked due to the fact that the ER is the birthplace of LDs. LDs have an atypical architecture, consisting of a neutral lipid core that is covered by a phospholipid monolayer. LD biogenesis starts with neutral lipid synthesis in the ER membrane and formation of small neutral lipid lenses between its leaflets, followed by budding of mature LDs toward the cytosol.Several ER proteins have been identified that are required for efficient LD formation, among them seipin, Pex30, and FIT2. Recent evidence indicates that these LD biogenesis factors might cooperate with specific lipids, thus generating ER subdomains optimized for LD assembly. Intriguingly, LD biogenesis reacts dynamically to nutrient stress, resulting in a spatial reorganization of LD formation in the ER.  相似文献   

19.
Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets.  相似文献   

20.
The adipocytes synthesize and store triglycerides as lipid droplets surrounded by various proteins and phospholipids at its surface. Recently, the molecular basis of some of the genetic syndromes of lipodystrophies has been elucidated and some of these genetic loci have been found to contribute to lipid droplet formation in adipocytes. The two main types of genetic lipodystrophies are congenital generalized lipodystrophy (CGL) and familial partial lipodystrophy (FPL). So far, three CGL loci: 1-acylglycerol-3-phosphate-O-acyltransferase 2 (AGPAT2), Berardinelli–Seip Congenital Lipodystrophy 2 (BSCL2) and caveolin 1 (CAV1) and four FPL loci: lamin A/C (LMNA), peroxisome proliferator-activated receptor γ (PPARG), v-AKT murine thymoma oncogene homolog 2 (AKT2) and zinc metalloprotease (ZMPSTE24), have been identified. AGPAT2 plays a critical role in the synthesis of glycerophospholipids and triglycerides required for lipid droplet formation. Another protein, seipin (encoded by BSCL2 gene), has been found to induce lipid droplet fusion. CAV1 is an integral component of caveolae and might contribute towards lipid droplet formation. PPARγ and AKT2 play important role in adipogenesis and lipid synthesis. In this review, we discuss and speculate about the contribution of various lipodystrophy genes and their products in the lipid droplet formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号