首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA), and this inhibition is relieved by Ca(2+) calmodulin-dependent protein kinase II (CaM kinase II) phosphorylation. We previously reported significant differences in contractility, SR Ca(2+) release, and CaM kinase II activity in gastric fundus smooth muscles as a result of PLB phosphorylation by CaM kinase II. In this study, we used PLB-knockout (PLB-KO) mice to directly examine the effect of PLB absence on contractility, CaM kinase II activity, and intracellular Ca(2+) waves in gastric antrum smooth muscles. The frequencies and amplitudes of spontaneous phasic contractions were elevated in antrum smooth muscle strips from PLB-KO mice. Bethanecol increased the amplitudes of phasic contractions in antrum smooth muscles from both control and PLB-KO mice. Caffeine decreased and cyclopiazonic acid (CPA) increased the basal tone of antrum smooth muscle strips from PLB-KO mice, but the effects were less pronounced compared with control strips. The CaM kinase II inhibitor KN-93 was less effective at inhibiting caffeine-induced relaxation in antrum smooth muscle strips from PLB-KO mice. CaM kinase II autonomous activity was elevated, and not further increased by caffeine, in antrum smooth muscles from PLB-KO mice. Similarly, the intracellular Ca(2+) wave frequency was elevated, and not further increased by caffeine, in antrum smooth muscles from PLB-KO mice. These findings suggest that PLB is an important modulator of gastric antrum smooth muscle contractility by modulation of SR Ca(2+) release and CaM kinase II activity.  相似文献   

2.
We tested the hypothesis that the negative functional effects of cyclic GMP on cardiac myocytes were mediated through phospholamban (PLB) and activation of sarcoplasmic reticulum Ca(2+)-ATPase. Using ventricular myocytes from wild type (WT, n=10) and PLB knockout (PLB-KO, n=10) mouse hearts, functional changes were measured using a video edge detector at baseline and after 10(-6), 10(-5)M 8-bromo-cyclic GMP (cGMP), 10(-8), 10(-7)M C-type natriuretic peptide (CNP), or 10(-6), 10(-5)M S-nitroso-N-acetyl-penicillamine (SNAP, nitric oxide donor). Changes in cytosolic Ca(2+) concentration were assessed in fura 2-loaded WT and PLB-KO myocytes. Cyclic GMP dependent phosphorylation analysis was also performed in WT and PLB-KO myocytes. 8-bromo-cGMP 10(-5)M caused a significant decrease in %shortening (3.6+/-0.2% to 2.3+/-0.1%) in WT, but little change in PLB-KO myocytes (3.4+/-0.1% to 3.2+/-0.2%). Similarly, CNP and SNAP reduced %shortening of WT, but not PLB-KO myocyte. Changes in other contractile parameters such as maximum rate of shortening and relaxation were consistent with the changes in % shortening. Intracellular Ca(2+) transients changed similarly to cell contractility in WT and PLB-KO myocytes treated with cGMP and CNP; i.e. Ca(2+) transients decreased with cGMP or CNP in WT myocytes, but were unchanged in PLB-KO myocytes. cGMP dependent phosphorylation analysis showed that some proteins were phosphorylated by cGMP to a lesser extent in PLB-KO compared with WT myocytes, suggesting impaired cGMP-kinase function in PLB-KO cardiac myocytes. These results indicated that cGMP-induced reductions in cardiac myocyte function were at least partially mediated through the action of phospholamban.  相似文献   

3.
Elevations in the intracellular Ca(2+) concentration activate the serine/threonine protein kinase Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II). We tested the hypothesis that increased sarco(endo)plasmic reticulum Ca(2+)-ATPase activity by phospholamban (PLB) phosphorylation contributes to smooth muscle relaxation by elevating the sarcoplasmic reticulum (SR) Ca(2+) load and increasing the frequency of Ca(2+) release events from the SR. We have previously shown that caffeine or sodium nitroprusside (SNP) relaxes murine gastric fundus smooth muscles and increases PLB phosphorylation by CaM kinase II. These findings suggest that an increased SR Ca(2+) load increases the frequency of Ca(2+) transients from the SR and results in PLB phosphorylation by CaM kinase II, contributing to caffeine- or SNP-induced relaxation. The aim of the present study was to investigate the effects of SNP on CaM kinase II and PLB phosphorylation in gastric antrum smooth muscles. SNP or 8-bromo-cGMP decreased the basal tone and amplitudes of spontaneous phasic contractions and activated CaM kinase II. SNP-induced relaxation and CaM kinase II activation were blocked by [1,2,4]oxadizolo-[4,3alpha]quinoxaline-1-one (ODQ) and inhibited by cyclopiazonic acid (CPA) or KN-93. SNP also increased PLBSer(16) and PLBThr(17) phosphorylation. Both PLBSer(16) and Thr(17) phosphorylation were ODQ sensitive. However, only PLBThr(17) phosphorylation was inhibited by CPA or KN-93. These results suggest that CaM kinase II activation and PLB phosphorylation participate in the relaxant effect of SNP on murine gastric antrum smooth muscles through a nitric oxide/guanylyl cyclase/cGMP pathway.  相似文献   

4.
Both Ser(16) and Thr(17) of phospholamban (PLB) are phosphorylated, respectively, by cAMP-dependent protein kinase (PKA) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). PLB phosphorylation relieves cardiac sarcoplasmic reticulum Ca(2+) pump from inhibition by PLB. Previous studies have suggested that phosphorylation of Ser(16) by PKA is a prerequisite for Thr(17) phosphorylation by CaMKII and is essential to the relaxant effect of beta-adrenergic stimulation. To determine the role of Thr(17) PLB phosphorylation, we investigated the dual-site phosphorylation of PLB in isolated adult rat cardiac myocytes in response to beta(1)-adrenergic stimulation or electrical field stimulation (0. 1-3 Hz) or both. A beta(1)-adrenergic agonist, norepinephrine (10(-9)-10(-6) m), in the presence of an alpha(1)-adrenergic antagonist, prazosin (10(-6) m), selectively increases the PKA-dependent phosphorylation of PLB at Ser(16) in quiescent myocytes. In contrast, electrical pacing induces an opposite phosphorylation pattern, selectively enhancing the CaMKII-mediated Thr(17) PLB phosphorylation in a frequency-dependent manner. When combined, electric stimulation (2 Hz) and beta(1)-adrenergic stimulation lead to dual phosphorylation of PLB and exert a synergistic effect on phosphorylation of Thr(17) but not Ser(16). Frequency-dependent Thr(17) phosphorylation is closely correlated with a decrease in 50% relaxation time (t(50)) of cell contraction, which is independent of, but additive to, the relaxant effect of Ser(16) phosphorylation, resulting in hastened contractile relaxation at high stimulation frequencies. Thus, we conclude that in intact cardiac myocytes, phosphorylation of PLB at Thr(17) occurs in the absence of prior Ser(16) phosphorylation, and that frequencydependent Thr(17) PLB phosphorylation may provide an intrinsic mechanism for cardiac myocytes to adapt to a sudden change of heart rate.  相似文献   

5.
We studied how the nitric oxide (NO*) donor 3-morpholinosydnonimine (SIN-1) alters the response to beta-adrenergic stimulation in cardiac rat myocytes. We found that SIN-1 decreases the positive inotropic effect of isoproterenol (Iso) and decreases the extent of both cell shortening and Ca2+ transient. These effects of SIN-1 were associated with an increased intracellular concentration of cGMP, a decreased intracellular concentration of cAMP, and a reduction in the levels of phosphorylation of phospholamban (PLB) and troponin I (TnI). The guanylyl cyclase inhibitor 1H-8-bromo-1,2,4-oxadiazolo (3,4-d)benz(b)(1,4)oxazin-1-one (ODQ) was not able to prevent the SIN-1-induced reduction of phosphorylation levels of PLB and TnI. However, the effects of SIN-1 were abolished in the presence of superoxide dismutase (SOD) or SOD and catalase. These data suggest that, in the presence of Iso, NO-related congeners, rather than NO*, are responsible for SIN-1 effects. Our results provide new insights into the mechanism by which SIN-1 alters the positive inotropic effects of beta-adrenergic stimulation.  相似文献   

6.
Phospholamban(PLB) ablation is associated with enhanced sarcoplasmic reticulum (SR)Ca2+ uptake and attenuation of thecardiac contractile responses to -adrenergic agonists. In thepresent study, we compared the effects of isoproterenol (Iso) on theCa2+ currents(ICa) ofventricular myocytes isolated from wild-type (WT) and PLB knockout(PLB-KO) mice. Current density and voltage dependence ofICa were similarbetween WT and PLB-KO cells. However, ICa recorded fromPLB-KO myocytes had significantly faster decay kinetics. Iso increasedICa amplitude inboth groups in a dose-dependent manner (50% effective concentration,57.1 nM). Iso did not alter the rate ofICa inactivationin WT cells but significantly prolonged the rate of inactivation inPLB-KO cells. When Ba2+ was usedas the charge carrier, Iso slowed the decay of the current in both WTand PLB-KO cells. Depletion of SRCa2+ by ryanodine also slowed therate of inactivation ofICa, and subsequent application of Iso further reduced the inactivation rate ofboth groups. These results suggest that enhancedCa2+ release from the SR offsetsthe slowing effects of -adrenergic receptor stimulation on the rateof inactivation ofICa.

  相似文献   

7.
8.
We tested the hypothesis that increased Sarcoplasmic reticulum (SR) Ca content ([Ca](SRT)) in phospholamban knockout mice (PLB-KO) is because of increased SR Ca pump efficiency defined by the steady-state SR [Ca] gradient. The time course of thapsigargin-sensitive ATP-dependent (45)Ca influx into and efflux out of cardiac SR vesicles from PLB-KO and wild-type (WT) mice was measured at 100 nm free [Ca]. We found that PLB decreased the initial SR Ca uptake rate (0.13 versus 0.31 nmol/mg/s) and decreased steady-state (45)Ca content (0.9 versus 4.1 nmol/mg protein). Furthermore, at similar total SR [Ca], the pump-mediated Ca efflux rate was higher in WT (0.065 versus 0.037 nmol/mg/s). The pump-independent leak rate constant (k(leak)) was also measured at 100 nm free [Ca]. The results indicate that k(leak) was < 1% of pump-mediated backflux and was not different among nonpentameric mutant PLB (PLB-C41F), WT pentameric PLB (same expression level), and PLB-KO. Therefore differences in passive SR Ca leak cannot be the cause of the higher thapsigargin-sensitive Ca efflux from the WT membranes. We conclude that the decreased total SR [Ca] in WT mice is caused by decreased SR Ca influx rate, an increased Ca-pump backflux, and unaltered leak. Based upon both thermodynamic and kinetic analysis, we conclude that PLB decreases the energetic efficiency of the SR Ca pump.  相似文献   

9.
Transgenic (TG) TNF1.6 mice, which cardiac specifically overexpress tumor necrosis factor-alpha (TNF-alpha), exhibit heart failure (HF) and increased mortality, which is markedly higher in young (<20 wk) males (TG-M) than females (TG-F). HF in this model may be partly caused by remodeling of the extracellular matrix and/or structure/function alterations at the single myocyte level. We studied left ventricular (LV) structure and function using echocardiography and LV myocyte morphometry, contractile function, and intracellular Ca(2+) (Ca(i)(2+)) handling using cell edge detection and fura 2 fluorescence, respectively, in 12-wk-old TG-M and TG-F mice and their wild-type (WT) littermates. TG-F mice showed LV hypertrophy without dilatation and only a small reduction of basal fractional shortening (FS) and response to isoproterenol (Iso). TG-M mice showed a large LV dilatation, higher mRNA levels of beta-myosin heavy chain and atrial natriuretic factor versus TG-F mice, reduced FS relative to both WT and TG-F mice, and minimal response to Iso. TG-F and TG-M myocytes were similarly elongated (by approximately 20%). The amplitude of Ca(i)(2+) transients and contractions and the response to Iso were comparable in WT and TG-F myocytes, whereas the time to 50% decline (TD(50%)) of the Ca(i)(2+) transient, an index of the rate of sarcoplasmic reticulum Ca(2+) uptake, was prolonged in TG-F myocytes. In TG-M myocytes, the amplitudes of Ca(i)(2+) transients and contractions were reduced, TD(50%) of the Ca(i)(2+) transient was prolonged, and the inotropic effect of Iso on Ca(i)(2+) transients was reduced approximately twofold versus WT myocytes. Protein expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and phospholamban was unaltered in TG versus WT hearts, suggesting functional origins of impaired Ca(2+) handling in the former. These results indicate that cardiac-specific overexpression of TNF-alpha induces myocyte hypertrophy and gender-dependent alterations in Ca(i)(2+) handling and contractile function, which may at least partly account for changes in LV geometry and in vivo cardiac function in this model.  相似文献   

10.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   

11.
In this study we evaluated the contractile characteristics of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)1a-expressing hearts ex vivo and in vivo and in particular their response to beta-adrenergic stimulation. Analysis of isolated, work-performing hearts revealed that transgenic (TG) hearts develop much higher maximal rates of contraction and relaxation than wild-type (WT) hearts. Addition of isoproterenol only moderately increased the maximal rate of relaxation (+20%) but did not increase contractility or decrease relaxation time in TG hearts. Perfusion with varied buffer Ca(2+) concentrations indicated an altered dose response to Ca(2+). In vivo TG hearts displayed fairly higher maximal rates of contraction (+ 25%) but unchanged relaxation parameters and a blunted but significant response to dobutamine. Our study also shows that the phospholamban (PLB) level was decreased (-40%) and its phosphorylation status modified in TG hearts. This study clearly demonstrates that increases in SERCA protein level alter the beta-adrenergic response and affect the phosphorylation of PLB. Interestingly, the overall cardiac function in the live animal is only slightly enhanced, suggesting that (neuro)hormonal regulations may play an important role in controlling in vivo heart function.  相似文献   

12.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR)Ca2+-ATPase, and this inhibition is relieved bycAMP-dependent protein kinase (PKA)-mediated phosphorylation. The roleof PLB in regulating Ca2+ release throughryanodine-sensitive Ca2+ release channels, measured asCa2+ sparks, was examined using smooth muscle cells ofcerebral arteries from PLB-deficient ("knockout") mice(PLB-KO). Ca2+ sparks were monitored opticallyusing the fluorescent Ca2+ indicator fluo 3 or electricallyby measuring transient large-conductance Ca2+-activatedK+ (BK) channel currents activated by Ca2+sparks. Basal Ca2+ spark and transient BK current frequencywere elevated in cerebral artery myocytes of PLB-KO mice. Forskolin, anactivator of adenylyl cyclase, increased the frequency ofCa2+ sparks and transient BK currents in cerebral arteriesfrom control mice. However, forskolin had little effect on thefrequency of Ca2+ sparks and transient BK currents fromPLB-KO cerebral arteries. Forskolin or PLB-KO increased SRCa2+ load, as measured by caffeine-induced Ca2+transients. This study provides the first evidence that PLB is criticalfor frequency modulation of Ca2+ sparks and associated BKcurrents by PKA in smooth muscle.

  相似文献   

13.
Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+ / H+ exchanger and the Na+ / Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia.  相似文献   

14.
This study investigated cardiac excitation-contraction coupling at 37 degrees C in transgenic mice with cardiac-specific overexpression of human beta2-adrenergic receptors (TG4 mice). In field-stimulated myocytes, contraction was significantly greater in TG4 compared with wild-type (WT) ventricular myocytes. In contrast, when duration of depolarization was controlled with rectangular voltage clamp steps, contraction amplitudes initiated by test steps were the same in WT and TG4 myocytes. When cells were voltage clamped with action potentials simulating TG4 and WT action potential configurations, contractions were greater with long TG4 action potentials and smaller with shorter WT action potentials, which suggests an important role for action potential configuration. Interestingly, peak amplitude of L-type Ca2+ current (I(Ca-L)) initiated by rectangular test steps was reduced, although the voltage dependencies of contractions and currents were not altered. To explore the basis for the altered relation between contraction and I(Ca-L), Ca2+ concentrations were measured in myocytes loaded with fura 2. Diastolic concentrations of free Ca2+ and amplitudes of Ca2+ transients were similar in voltage-clamped myocytes from WT and TG4 mice. However, sarcoplasmic reticulum (SR) Ca2+ content assessed with the rapid application of caffeine was elevated in TG4 cells. Increased SR Ca2+ was accompanied by increased frequency and amplitudes of spontaneous Ca2+ sparks measured at 37 degrees C with fluo 3. These observations suggest that the gain of Ca(2+)-induced Ca2+ release is increased in TG4 myocytes. Increased gain counteracts the effects of decreased amplitude of I(Ca-L) in voltage-clamped myocytes and likely contributes to increased contraction amplitudes in field-stimulated TG4 myocytes.  相似文献   

15.
Viral-mediated gene transfer of troponin I(TnI) isoforms and chimeras into adult rat cardiac myocytes was used toinvestigate the role TnI domains play in the myofilament tensionresponse to protein kinase A (PKA). In myocytes expressing endogenouscardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein Cand decreased the Ca2+ sensitivity of myofilament tension.In marked contrast, PKA did not influence Ca2+-activatedtension in myocytes expressing the slow skeletal isoform of TnI or achimera (N-slow/card-C TnI), which lack the unique phosphorylatableamino terminal extension found in cTnI. PKA-mediated phosphorylation ofa second TnI chimera, N-card/slow-C TnI, which has the amino terminalregion of cTnI, caused a decrease in the Ca2+ sensitivityof tension comparable in magnitude to control myocytes. Based on theseresults, we propose the amino terminal region shared by cTnI andN-card/slow-C TnI plays a central role in determining the magnitude ofthe PKA-mediated shift in myofilament Ca2+ sensitivity,independent of the isoform-specific functional domains previouslydefined within the carboxyl terminal backbone of TnI. Interestingly,exposure of permeabilized myocytes to acidic pH after PKA-mediatedphosphorylation of cTnI resulted in an additive decrease in myofilamentCa2+ sensitivity. The isoform-specific, pH-sensitive regionwithin TnI lies in the carboxyl terminus of TnI, and the additiveresponse provides further evidence for the presence of a separatedomain that directly transduces the PKA phosphorylation signal.

  相似文献   

16.
Our model of phospholamban (PLB) regulation of the cardiac Ca(2+)-ATPase in sarcoplasmic reticulum (SERCA2a) states that PLB binds to the Ca(2+)-free, E2 conformation of SERCA2a and blocks it from transitioning from E2 to E1, the Ca(2+)-bound state. PLB and Ca(2+) binding to SERCA2a are mutually exclusive, and PLB inhibition of SERCA2a is manifested as a decreased apparent affinity of SERCA2a for Ca(2+). Here we extend this model to explain the reversal of SERCA2a inhibition that occurs after phosphorylation of PLB at Ser(16) by protein kinase A (PKA) and after binding of the anti-PLB monoclonal antibody 2D12, which recognizes residues 7-13 of PLB. Site-specific cysteine variants of PLB were co-expressed with SERCA2a, and the effects of PKA phosphorylation and 2D12 on Ca(2+)-ATPase activity and cross-linking to SERCA2a were monitored. In Ca(2+)-ATPase assays, PKA phosphorylation and 2D12 partially and completely reversed SERCA2a inhibition by decreasing K(Ca) values for enzyme activation, respectively. In cross-linking assays, cross-linking of PKA-phosphorylated PLB to SERCA2a was inhibited at only two of eight sites when conducted in the absence of Ca(2+) favoring E2. However, at a subsaturating Ca(2+) concentration supporting some E1, cross-linking of phosphorylated PLB to SERCA2a was attenuated at all eight sites. K(Ca) values for cross-linking inhibition were decreased nearly 2-fold at all sites by PLB phosphorylation, demonstrating that phosphorylated PLB binds more weakly to SERCA2a than dephosphorylated PLB. In parallel assays, 2D12 blocked PLB cross-linking to SERCA2a at all eight sites regardless of Ca(2+) concentration. Our results demonstrate that 2D12 restores maximal Ca(2+)-ATPase activity by physically disrupting the binding interaction between PLB and SERCA2a. Phosphorylation of PLB by PKA weakens the binding interaction between PLB and SERCA2a (yielding more PLB-free SERCA2a molecules at intermediate Ca(2+) concentrations), only partially restoring Ca(2+) affinity and Ca(2+)-ATPase activity.  相似文献   

17.
18.
We examined the effect of troponin I (TnI) phosphorylation by cAMP-dependent protein kinase (PKA) on the length-dependent tension activation in skinned rat cardiac trabeculae. Increasing sarcomere length shifted the pCa (-log[Ca2+])-tension relation to the left. Treatment with PKA decreased the Ca2+ sensitivity of the myofilament and also decreased the length-dependent shift of the pCa-tension relation. Replacement of endogenous TnI with phosphorylated TnI directly demonstrated that TnI phosphorylation is responsible for the decreased length-dependence. When MgATP concentration was lowered in the absence of Ca2+, tension was elicited through rigorous cross-bridge-induced thin filament activation. Increasing sarcomere length shifted the pMgATP (-log[MgATP])-tension relation to the right, and either TnI phosphorylation or partial extraction of troponin C (TnC) abolished this length-dependent shift. We conclude that TnI phosphorylation by PKA attenuates the length-dependence of tension activation in cardiac muscle by decreasing the cross-bridge-dependent thin filament activation through a reduction of the interaction between TnI and TnC.  相似文献   

19.
Phospholamban (PLB) can be phosphorylated at Ser(16) by cyclic AMP-dependent protein kinase and at Thr(17) by Ca(2+)-calmodulin-dependent protein kinase during beta-agonist stimulation. A previous study indicated that mutation of S16A in PLB resulted in lack of Thr(17) phosphorylation and attenuation of the beta-agonist stimulatory effects in perfused mouse hearts. To further delineate the functional interplay between dual-site PLB phosphorylation, we generated transgenic mice expressing the T17A mutant PLB in the cardiac compartment of the null background. Lines expressing similar levels of T17A mutant, S16A mutant, or wild-type PLB in the null background were characterized in parallel. Cardiac myocyte basal mechanics and Ca(2+) kinetics were similar among the three groups. Isoproterenol stimulation was associated with phosphorylation of both Ser(16) and Thr(17) in wild-type PLB and Ser(16) phosphorylation in T17A mutant PLB, whereas there was no detectable phosphorylation of S16A mutant PLB. Phosphorylation of Ser(16) alone in T17A mutant PLB resulted in responses of the mechanical and Ca(2+) kinetic parameters to isoproterenol similar to those in wild-type myocytes, which exhibited dual-site PLB phosphorylation. However, those parameters were significantly attenuated in the S16A mutant myocytes. Thus, Ser(16) in PLB can be phosphorylated independently of Thr(17) in vivo, and phosphorylation of Ser(16) is sufficient for mediating the maximal cardiac responses to beta-adrenergic stimulation.  相似文献   

20.
This study examines the age-related deficit in force of the ankle dorsiflexors during isometric (Iso), concentric (Con), and eccentric (Ecc) contractions. More specifically, the contribution of neural and muscular mechanisms to the loss of voluntary force was investigated in men and women. The torque produced by the dorsiflexors and the surface electromyogram (EMG) from the tibialis anterior and the soleus were recorded during maximal Iso contractions and during Con and Ecc contractions performed at constant angular velocities (5-100 degrees/s). Central activation was tested by the superimposed electrical stimulation method during maximal voluntary contraction and by computing the ratio between voluntary average EMG and compound muscle action potential (M wave) induced by electrical stimulation (average EMG/M wave). Contractile properties of the dorsiflexor muscles were investigated by recording the mechanical responses to single and paired maximal stimuli. The results showed that the age-related deficit in force (collapsed across genders and velocities) was greater for Iso (20.5%; P < 0.05) and Con (38.6%; P < 0.001) contractions compared with Ecc contractions (6.5%; P > 0.05). When the torque produced during Con and Ecc contractions was expressed relative to the maximal Iso torque, it was significantly reduced in Con contractions and increased in Ecc contractions with aging, with the latter effect being more pronounced for women. In both genders, voluntary activation was not significantly impaired in elderly adults and did not differ from young subjects. Similarly, coactivation was not changed with aging. In contrast, the mechanical responses to single and paired stimuli showed a general slowing of the muscle contractile kinetics with a slightly greater effect in women. It is concluded that the force deficit during Con and Iso contractions of the ankle dorsiflexors in advanced age cannot be explained by impaired voluntary activation or changes in coactivation. Instead, this age-related adaptation and the mechanisms that preserve force in Ecc contractions appeared to be located at the muscular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号