首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cellular cardiac preparations in which spontaneous activity was suppressed by EGTA buffering were isolated by microdissection. Uniform and reproducible contractions were induced by iontophoretically released calcium ions. No effects of a diffusional barrier to calcium ions between the micropipette and the contractile system were detected since the sensitivity of the mechanical performance for calcium was the same regardless of whether a constant amount of calcium ions was released from a single micropipette or from two micropipettes positioned at different sites along the longitudinal axis of the preparation. Force development, muscle length, and shortening velocity of eitherisometric or isotopic contractions were measured simultaneously. Initial length, and hence preload of the preparation were established by means of an electronic stop and any additional load was sensed as afterload. Mechanical performance was derived from force velocity relations and from the interrelationship between simultaneously measured force, length, and shortening velocity. From phase plane analysis of shortening velocity vs, instantaneous length during shortening and from load clamp experiments, the interrelationship between force, shortening, and velocity was shown to be independent of time during the major portion of shortening. Moreover, peak force, shortening, and velocity of shortening depended on the amount of calcium ions in the medium at low and high ionic strength.  相似文献   

3.
R S Chadwick 《Biorheology》1991,28(3-4):171-176
The force-velocity relation for cardiac muscle fibers can be calculated from a proposed constitutive law based on force-time and force-length data. The calculated force-velocity relation agrees quite well with the measured force-velocity relation obtained from a quick release of sarcomere controlled rat cardiac trabeculae. The theory confirms the measured linear relationship between maximal velocity of sarcomere shortening and sarcomere length. The implication is that the force-velocity relation is not an independent property, and therefore need not be explicitly included as a rheological element in the constitutive law.  相似文献   

4.
Recent progress in tissue engineering has made it possible to build contractile bio-hybrid materials that undergo conformational changes by growing a layer of cardiac muscle on elastic polymeric membranes. Further development of such muscular thin films for building actuators and powering devices requires exploring several design parameters, which include the alignment of the cardiac myocytes and the thickness/Young's modulus of elastomeric film. To more efficiently explore these design parameters, we propose a 3-D phenomenological constitutive model, which accounts for both the passive deformation including pre-stretch and the active behavior of the cardiomyocytes. The proposed 3-D constitutive model is implemented within a finite element framework, and can be used to improve the current design of bio-hybrid thin films and help developing bio-hybrid constructs capable of complex conformational changes.  相似文献   

5.
6.
Vinculin localization in cardiac muscle   总被引:5,自引:0,他引:5  
Vinculin isolated from chicken cardiac muscle crossreacts with antibodies against smooth muscle vinculin. Antibodies to vinculin were used for localization of vinculin in cardiac muscle by indirect immunofluorescence method. In cardiac muscle vinculin was localized in intercalated discs and near plasma membrane at the cell periphery between external myofibrils and sarcolemma. It was suggested that vinculin plays an important role in myofibril-sarcolemma interaction in cardiac muscle.  相似文献   

7.
8.
The cardiac muscle cell   总被引:6,自引:0,他引:6  
The cardiac myocyte is the most physically energetic cell in the body, contracting constantly, without tiring, 3 billion times or more in an average human lifespan. By coordinating its beating activity with that of its 3 billion neighbours in the main pump of the human heart, over 7,000 litres of blood are pumped per day, without conscious effort, along 100,000 miles of blood vessels. A detailed picture of the membrane organisation of the cardiac muscle cell underpins our understanding of how the electrical impulse, generated within the heart, stimulates coordinated contraction of the cardiac chambers. This article highlights, with the aid of modern cellular imaging methods, key components of the membrane machinery responsible for coupling electrical excitation and contraction in the cardiomyocyte, focusing on plasma membrane/sarcoplasmic reticulum and plasma membrane/plasma membrane junctions. BioEssays 22:188-199, 2000.  相似文献   

9.
Zebrafish reproduce in large quantities, grow rapidly, and are transparent early in development. For these reasons, zebrafish have been used extensively to model vertebrate development and disease. Like mammals, zebrafish express dystrophin and many of its associated proteins early in development and these proteins have been shown to be vital for zebrafish muscle stability. In dystrophin-null zebrafish, muscle degeneration becomes apparent as early as 3 days post-fertilization (dpf) making the zebrafish an excellent organism for large-scale screens to identify other genes involved in the disease process or drugs capable of correcting the disease phenotype. Being transparent, developing zebrafish are also an ideal experimental model for monitoring the fate of labeled transplanted cells. Although zebrafish dystrophy models are not meant to replace existing mammalian models of disease, experiments requiring large numbers of animals may be best performed in zebrafish. Results garnered from using this model could lead to a better understanding of the pathogenesis of the muscular dystrophies and the development of future therapies.  相似文献   

10.
Chicken cardiac muscle myofibrils lack a visible M-line. Antibodies against chicken breast muscle M-protein, an M-line component with Mr = 165 000, were used to demonstrate the presence of a similar protein in chicken heart muscle. The immunoreplica technique showed the heart protein to have about the same molecular weight as the breast muscle M-protein on polyacrylamide slab gels in the presence of sodium dodecyl sulfate (SDS). Positive staining within the H-zone was observed when the indirect immunofluorescence technique was used to localize the M-protein in isolated heart myofibrils. This result was confirmed by electron microscopic investigations on longitudinal sections of antibody-incubated heart muscle fiber bundles showing the antibody against M-protein to be bound within a region corresponding to the M-line region of breast muscle myofibrils.  相似文献   

11.
12.
Isolated trabeculae of rabbit and guinea pig atrium exposed to low-sodium solution developed after-contractions and increased diastolic tension when rhythmic steady-state stimulation was stopped. Single excitation applied during rest or at the peak of after-contraction brought the resting tension to the low, control level. Tension of isolated cat papillary muscle increased due to action of 17 mmol of caffeine applied during rest was reduced during rhythmic post-rest stimulation. Early extra-excitation potentiated relaxation of atrial muscle exposed to low-sodium solution. It is concluded that relaxing factor of cardiac muscle is activated by excitation of the cell.  相似文献   

13.
Summary An attempt was made to label injured cardiac muscle cells by exposing them to two electron-opaque tracers, ruthenium red and lanthanum nitrate. To do this, false tendons of sheep hearts containing strands of Purkinje fibers were sectioned, allowed to heal, and then exposed to the tracer during fixation. After this treatment, a group of cells near the cut end were found to be labelled intracellularly with the tracers while the remaining cells in the strand were unlabelled.For comparison, several false tendons were fixed briefly in glutaraldehyde before being cut and then exposed to the tracer. With lanthanum, the results were similar to those obtained when the cells had been damaged prior to fixation. However, when ruthenium red was used as the tracer, it penetrated much further into the cellular strand, its intensity gradually diminishing with distance from the cut end. This finding of apparent dye-coupling in fixed tissue was surprising since it has been suggested that glutaraldehyde fixation converts all communicating junctions to the uncoupled state.Dye-coupling of fixed tissue with ruthenium red as a tracer was seen also in frog atrial trabeculae.Gap junctions between injured (and presumably uncoupled) sheep heart Purkinje cells were compared to gap junctions between uninjured control cells in thin sections. No difference was detected.  相似文献   

14.
15.
16.
According to the current views the direct and indispensable source of Ca2+ activating contraction is sarcoplasmic reticulum (SR). Ca2+ is released from the SR when its release channels (ryanodine receptors) are activated by Ca2+ influx through the L-type Ca2+ channels (dihydropyridine receptors). In contrast, ryanodine receptors of skeletal muscles are activated by conformational changes in dihydropyridine receptors induced by sarcolemmal voltage. Ca2+ influx is not necessary for their activation. In this review the papers not quite conforming with the current views are referred to and discussed. Their results suggest that SR is not an indispensable source of contractile Ca2+ at least in some mammalian species, and that cardiac ryanodine receptors may be activated by conformational changes in dihydropyridine receptors without Ca2+ influx (like in skeletal muscle). This may be a mechanism parallel to or accessory to the Ca2+ induced release of Ca2+ (CIRC).  相似文献   

17.
MicroRNAs in skeletal and cardiac muscle development   总被引:1,自引:0,他引:1  
MicroRNAs (miRNAs) are a recently discovered class of small non-coding RNAs, which are approximately 22 nucleotides in length. miRNAs negatively regulate gene expression by translational repression and target mRNA degradation. It has become clear that miRNAs are involved in many biological processes, including development, differentiation, proliferation, and apoptosis. Interestingly, many miRNAs are expressed in a tissue-specific manner and several miRNAs are specifically expressed in cardiac and skeletal muscles. In this review, we focus on those miRNAs that have been shown to be involved in muscle development. Compelling evidences have demonstrated that muscle miRNAs play an important role in the regulation of muscle proliferation and differentiation processes. However, it appears that miRNAs are not essential for early myogenesis and muscle specification. Importantly, dysregulation of miRNAs has been linked to muscle-related diseases, such as cardiac hypertrophy. A mutation resulting in a gain-of-function miRNA target site in the myostatin gene leads to down regulation of the targeted protein in Texel sheep. miRNAs therefore are a new class of regulators of muscle biology and they might become novel therapeutic targets in muscle-related human diseases.  相似文献   

18.
Adult mammalian cardiac muscle cells in culture   总被引:4,自引:0,他引:4  
A C Nag  M Cheng 《Tissue & cell》1981,13(3):515-523
Adult rat cardiac muscle cells were isolated from the ventricle by a retrograde perfusion technique through the aorta (Nag and Zak, 1979). These single, isolated cardiac muscle cells were cultured for 4 weeks. Throughout the culture period, a small number of muscle cells retained their cylindrical shape, while the rest exhibited alterations in shape and size assuming a flattened body of irregular shape with pseudopodia-like processes and thereby resembling embryonic/neonatal cardiac muscle cells in culture. Transmission electron microscopy revealed that the cylindrical muscle cells contained compactly arranged myofibrils and cellular organelles, similar to those of freshly isolated and in vivo cells. A few irregularly shaped cardiac muscle cells were similar to the cylindrical cells in their internal structural organization. Most of the irregular cells exhibited less myofibrillar content than that of the freshly dissociated and in vivo cells. Myofibrils in the irregular cells were widely spaced and myofilament of some of the myofibrils were loosely bunched. In addition, scattered patches of myofibrils and free myofilaments were observed in many of these cells. The internal structural organization of these irregularly shaped cardiac muscle cells closely resembled the embryonic and neonatal cardiac muscle cells in vitro and in vivo. Most of the muscle cells in culture continued to contract spontaneously, and electron microscope studies clearly indicated that they underwent dedifferentiation. Autoradiography studies demonstrated that the cylindrical and irregularly shaped cardiac muscle cells underwent DNA synthesis and cell division in culture.  相似文献   

19.
Mechanisms underlying calcium sparks in cardiac muscle   总被引:5,自引:0,他引:5  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号