首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
目的建立cTnT^R92Q肥厚型心肌病的转基因小鼠模型。方法把cTnT^R92Q基因插入-αMHC启动子下游,构建转基因表达载体,通过显微注射法建立cTnT^R92Q转基因C57BL/6J小鼠。PCR鉴定cTnT^R92Q转基因小鼠的基因表型,RT-PCR检测基因表达,光学显微镜和超声检测cTnT^R92Q转基因小鼠心脏的病理改变。结果建立了3个不同表达水平的cTnT^R92Q转基因小鼠品系。转入的cTnT^R92Q基因在心脏组织的表达水平高于内源性cTnT。组织学分析显示cTnT^R92Q转基因小鼠心脏变大,心室壁肥厚,心腔变小,心肌细胞排列紊乱,心肌间质纤维增多。超声检查显示心室壁变厚,收缩期容积和舒张期容积显著缩小,射血分数、短轴缩短率明显增加。结论cTnT^R92Q转基因小鼠心脏变大,室壁变厚,心腔变小,心肌细胞排列紊乱,间质纤维化以及心肌舒张功能失调,说明成功建立了cTnT^R92Q转基因小鼠肥厚型心肌病模型,为研究肥厚型心肌病发病机制和药物研发提供了有价值的动物模型。  相似文献   

2.
Rats and genetically manipulated mouse models have played an important role in the exploration of molecular causes of cardiovascular diseases. However, it has not been fully investigated whether mice or rats and humans manifest similar patterns of ventricular wall motion. Although similarities in anatomy and myofiber architecture suggest that fundamental patterns of ventricular wall motion may be similar, the considerable differences in heart size, heart rate, and sarcomeric protein isoforms may yield quantitative differences in ventricular wall mechanics. To further our understanding of the basic mechanisms of myofiber contractile performance, we quantified regional and global indexes of ventricular wall motion in mice, rats, and men using magnetic resonance (MR) imaging. Both regular cine and tagged MR images at apical, midventricular, and basal levels were acquired from six male volunteers, six Fischer 344 rats, and seven C57BL/6 mice. Morphological parameters and ejection fraction were computed directly from cine images. Myocardial twist (rotation angle), torsion (net twist per unit length), circumferential strain, and normalized radial shortening were calculated by homogeneous strain analysis from tagged images. Our data show that ventricular twist was conserved among the three species, leading to a significantly smaller torsion, measured as net twist per unit length, in men. However, both circumferential strain and normalized radial shortening were the largest in male subjects. Although other parameters, such as circumferential-longitudinal shear strain, need to be evaluated, and the causes of these differences in contractile mechanics remain to be elucidated, the preservation of twist appears fundamental to cardiac function and should be considered in studies that extrapolate data from animals to humans.  相似文献   

3.
We recovered a novel mouse mutant exhibiting neonatal lethality associated with severe fetal cardiac hypertrophy and with some adult mice dying suddenly with left ventricular hypertrophic cardiomyopathy. Using Doppler echocardiography, we screened surviving adult mice in this mutant line for cardiac hypertrophy. Cardiac dimensions were obtained either from two-dimensional images collected using a novel ECG-gated ultra-high-frequency ultrasound system or by traditional M-mode imaging on a clinical ultrasound system. These analyses identified, among the littermates, two populations of mice: those with apparent cardiac hypertrophy with hypercontractile function characterized by ejection fraction of 75-80%, and normal littermates with ejection fraction of 53-55%. Analysis of the ECG-gated two-dimensional cines indicated that the hypertrophy was of the nonobstructive type. Further analysis of heart-to-body weight ratio confirmed the ultrasound diagnosis of left ventricular hypertrophic cardiomyopathy. Histopathology showed increased ventricular wall thickness, enlarged myocyte size, and mild myofiber disarray. Ultrastructural analysis by electron microscopy revealed mitochondria hyperproliferation and dilated sarcoplasmic reticulum. Genome scanning using microsatellite DNA markers mapped the mutation to the X chromosome. DNA sequencing showed no mutations in the coding regions of several candidate genes on the X chromosome, including several known to be associated with left ventricular hypertrophic cardiomyopathy. These findings suggest that this mouse line may harbor a mutation in a novel gene causing X-linked cardiomyopathy.  相似文献   

4.
5.
The ventricular isoform of human cardiac regulatory light chain (HCRLC) has been shown to be one of the sarcomeric proteins associated with familial hypertrophic cardiomyopathy (FHC), an autosomal dominant disease characterized by left ventricular and/or septal hypertrophy, myofibrillar disarray, and sudden cardiac death. Our recent studies have demonstrated that the properties of isolated HCRLC could be significantly altered by the FHC mutations and that their detrimental effects depend upon the specific position of the missense mutation. This report reveals that the Ca(2+) sensitivity of myofibrillar ATPase activity and steady-state force development are also likely to change with the location of the specific FHC HCRLC mutation. The largest effect was seen for the two FHC mutations, N47K and R58Q, located directly in or near the single Ca(2+)-Mg(2+) binding site of HCRLC, which demonstrated no Ca(2+) binding compared with wild-type and other FHC mutants (A13T, F18L, E22K, P95A). These two mutants when reconstituted in porcine cardiac muscle preparations increased Ca(2+) sensitivity of myofibrillar ATPase activity and force development. These results suggest the importance of the intact Ca(2+) binding site of HCRLC in the regulation of cardiac muscle contraction and imply its possible role in the regulatory light chain-linked pathogenesis of FHC.  相似文献   

6.
The intercalated disk protein Xin was originally discovered in chicken striated muscle and implicated in cardiac morphogenesis. In the mouse, there are two homologous genes, mXinalpha and mXinbeta. The human homolog of mXinalpha, Cmya1, maps to chromosomal region 3p21.2-21.3, near a dilated cardiomyopathy with conduction defect-2 locus. Here we report that mXinalpha-null mouse hearts are hypertrophied and exhibit fibrosis, indicative of cardiomyopathy. A significant upregulation of mXinbeta likely provides partial compensation and accounts for the viability of the mXinalpha-null mice. Ultrastructural studies of mXinalpha-null mouse hearts reveal intercalated disk disruption and myofilament disarray. In mXinalpha-null mice, there is a significant decrease in the expression level of p120-catenin, beta-catenin, N-cadherin, and desmoplakin, which could compromise the integrity of the intercalated disks and functionally weaken adhesion, leading to cardiac defects. Additionally, altered localization and decreased expression of connexin 43 are observed in the mXinalpha-null mouse heart, which, together with previously observed abnormal electrophysiological properties of mXinalpha-deficient mouse ventricular myocytes, could potentially lead to conduction defects. Indeed, ECG recordings on isolated, perfused hearts (Langendorff preparations) show a significantly prolonged QT interval in mXinalpha-deficient hearts. Thus mXinalpha functions in regulating the hypertrophic response and maintaining the structural integrity of the intercalated disk in normal mice, likely through its association with adherens junctional components and actin cytoskeleton. The mXinalpha-knockout mouse line provides a novel model of cardiac hypertrophy and cardiomyopathy with conduction defects.  相似文献   

7.
目的建立心脏特异表达Dkk3转基因模型小鼠,研究Dkk3对心脏发育及和心肌病的调节作用。方法把Dkk3基因插入心肌特异启动子-αMHC下游,构建转基因表达载体,显微注射法建立C57BL/6J Dkk3转基因小鼠,PCR鉴定转基因小鼠基因型,采用Northern blot检测Dkk3在心脏组织中的表达,HE染色和超声检查转基因小鼠心脏结构和功能。结果建立了3个不同表达水平的Dkk3转基因小鼠品系。转入的Dkk3基因在心脏组织的表达水平均高于同龄对照小鼠。组织学分析显示Dkk3小鼠室壁变厚,心腔减小,心肌细胞排列轻度紊乱。超声检查显示心室壁变厚,收缩期容积和舒张期容积显著减小,射血分数,短轴缩短率增加。结论Dkk3过表达导致转基因小鼠室壁变厚,心腔减小,心肌细胞排列轻度紊乱,心肌舒张功能轻度失调。  相似文献   

8.
Heat shock protein 20 (Hsp20) has been shown to be a critical regulator of cardiomyocyte survival upon cardiac stress. In this study, we investigated the functional significance of a novel human Hsp20 mutation (S10F) in peripartum cardiomyopathy. Previous findings showed that cardiac‐specific overexpression of this mutant were associated with reduced autophagy, left ventricular dysfunction and early death in male mice. However, this study indicates that females have normal function with no alterations in autophagy but died within a week after 1‐4 pregnancies. Further examination of mutant females revealed left ventricular chamber dilation and hypertrophic remodelling. Echocardiography demonstrated increases in left ventricular end‐systolic volume and left ventricular end‐diastolic volume, while ejection fraction and fractional shortening were depressed following pregnancy. Subsequent studies revealed that cardiomyocyte apoptosis was elevated in mutant female hearts after the third delivery, associated with decreases in the levels of Bcl‐2/Bax and Akt phosphorylation. These results indicate that the human S10F mutant is associated with dysregulation of cell survival signalling, accelerated heart failure and early death post‐partum.  相似文献   

9.
Small animal models of afterload stress have contributed much to our present understanding of the progression from hypertension to heart failure. High-sensitivity methods for phenotyping cardiac function in vivo, particular in the setting of compensated cardiac hypertrophy, may add new information regarding alterations in cardiac performance that can occur even during the earliest stages of exposure to pressure overload. We have developed an echocardiographic analytical method, based on speckle-tracking-based strain analyses, and used this tool to rapidly phenotype cardiac changes resulting from afterload stress in a small animal model. Adult mice were subjected to ascending aortic constriction, with and without subsequent reversal of the pressure gradient. In this model of compensated hypertrophic cardiac remodeling, conventional echocardiographic measurements did not detect changes in left ventricular (LV) function at the early time points examined. Strain analyses, however, revealed a decrement in basal longitudinal myofiber shortening that was induced by aortic constriction and improved following relief of the pressure gradient. Furthermore, we observed that pressure overload resulted in LV segmental dyssynchrony that was attenuated with return of the afterload to baseline levels. Herein, we describe the use of echocardiographic strain analyses for cardiac phenotyping in a mouse model of pressure overload. This method provides evidence of dyssynchrony and regional myocardial dysfunction that occurs early with compensatory hypertrophy, and improves following relief of aortic constriction. Importantly, these findings illustrate the utility of a rapid, non-invasive method for characterizing early cardiac dysfunction, not detectable by conventional echocardiography, following afterload stress.  相似文献   

10.

Aims

The mdx mouse has proven to be useful in understanding the cardiomyopathy that frequently occurs in muscular dystrophy patients. Here we employed a comprehensive array of clinically relevant in vivo MRI techniques to identify early markers of cardiac dysfunction and follow disease progression in the hearts of mdx mice.

Methods and Results

Serial measurements of cardiac morphology and function were made in the same group of mdx mice and controls (housed in a non-SPF facility) using MRI at 1, 3, 6, 9 and 12 months after birth. Left ventricular (LV) and right ventricular (RV) systolic and diastolic function, response to dobutamine stress and myocardial fibrosis were assessed. RV dysfunction preceded LV dysfunction, with RV end systolic volumes increased and RV ejection fractions reduced at 3 months of age. LV ejection fractions were reduced at 12 months, compared with controls. An abnormal response to dobutamine stress was identified in the RV of mdx mice as early as 1 month. Late-gadolinium-enhanced MRI identified increased levels of myocardial fibrosis in 6, 9 and 12-month-old mdx mice, the extent of fibrosis correlating with the degree of cardiac remodeling and hypertrophy.

Conclusions

MRI could identify cardiac abnormalities in the RV of mdx mice as young as 1 month, and detected myocardial fibrosis at 6 months. We believe these to be the earliest MRI measurements of cardiac function reported for any mice, and the first use of late-gadolinium-enhancement in a mouse model of congenital cardiomyopathy. These techniques offer a sensitive and clinically relevant in vivo method for assessment of cardiomyopathy caused by muscular dystrophy and other diseases.  相似文献   

11.
Familial hypertrophic cardiomyopathy is a disease characterized by left ventricular and/or septal hypertrophy and myofibrillar disarray. It is caused by mutations in sarcomeric proteins, including the ventricular isoform of myosin regulatory light chain (RLC). The E22K mutation is located in the RLC Ca(2+)-binding site. We have studied transgenic (Tg) mouse cardiac myofibrils during single-turnover contraction to examine the influence of E22K mutation on 1) dissociation time (tau(1)) of myosin heads from thin filaments, 2) rebinding time (tau(2)) of the cross bridges to actin, and 3) dissociation time (tau(3)) of ADP from the active site of myosin. tau(1) was determined from the increase in the rate of rotation of actin monomer to which a cross bridge was bound. tau(2) was determined from the rate of anisotropy change of the recombinant essential light chain of myosin labeled with rhodamine exchanged for native light chain (LC1) in the cardiac myofibrils. tau(3) was determined from anisotropy of muscle preloaded with a stoichiometric amount of fluorescent ADP. Cross bridges were induced to undergo a single detachment-attachment cycle by a precise delivery of stoichiometric ATP from a caged precursor. The times were measured in Tg-mutated (Tg-m) heart myofibrils overexpressing the E22K mutation of human cardiac RLC. Tg wild-type (Tg-wt) and non-Tg muscles acted as controls. tau(1) was statistically greater in Tg-m than in controls. tau(2) was shorter in Tg-m than in non-Tg, but the same as in Tg-wt. tau(3) was the same in Tg-m and controls. To determine whether the difference in tau(1) was due to intrinsic difference in myosin, we estimated binding of Tg-m and Tg-wt myosin to fluorescently labeled actin by measuring fluorescent lifetime and time-resolved anisotropy. No difference in binding was observed. These results suggest that the E22K mutation has no effect on mechanical properties of cross bridges. The slight increase in tau(1) was probably caused by myofibrillar disarray. The decrease in tau(2) of Tg hearts was probably caused by replacement of the mouse RLC for the human isoform in the Tg mice.  相似文献   

12.
Because of its complex geometry, assessment of right ventricular (RV) function is more difficult than it is for the left ventricle (LV). Because gene-targeted mouse models of cardiomyopathy may involve remodeling of the right heart, the purpose of this study was to develop high-resolution functional magnetic resonance imaging (MRI) for in vivo quantification of RV volumes and global function in mice. Thirty-three mice of various age were studied under isoflurane anesthesia by electrocardiogram-triggered cine-MRI at 7 T. MRI revealed close correlations between RV and LV stroke volume and cardiac output (r = 0.97, P < 0.0001 each). Consistent with human physiology, murine RV end-diastolic and end-systolic volumes were significantly higher compared with LV volumes (P < 0.05 each). MRI in mice with LV heart failure due to myocardial infarction revealed significant structural and functional changes of the RV, indicating RV dysfunction. Hence, MRI allows for the quantification of RV volumes and global systolic function with high accuracy and bears the potential to evaluate mechanisms of RV remodeling in mouse models of heart failure.  相似文献   

13.
Although cytoskeletal mutations are known causes of genetically based forms of dilated cardiomyopathy, the pathways that link these defects with cardiomyopathy are unclear. Here we report that the alpha-actinin-associated LIM protein (ALP; Alp in mice) has an essential role in the embryonic development of the right ventricular (RV) chamber during its exposure to high biomechanical workloads in utero. Disruption of the gene encoding Alp (Alp) is associated with RV chamber dilation and dysfunction, directly implicating alpha-actinin-associated proteins in the onset of cardiomyopathy. In vitro assays showed that Alp directly enhances the capacity of alpha-actinin to cross-link actin filaments, indicating that the loss of Alp function contributes to destabilization of actin anchorage sites in cardiac muscle. Alp also colocalizes at the intercalated disc with alpha-actinin and gamma-catenin, the latter being a known disease gene for human RV dysplasia. Taken together, these studies point to a novel developmental pathway for RV dilated cardiomyopathy via instability of alpha-actinin complexes.  相似文献   

14.
With aging, structural and functional changes occur in the myocardium without obvious impairment of systolic left ventricular (LV) function. Transmural differences in myocardial vulnerability for these changes may result in increase of transmural inhomogeneity in contractile myofiber function. Subendocardial fibrosis and impairment of subendocardial perfusion due to hypertension might change the transmural distribution of contractile myofiber function. The ratio of LV torsion to endocardial circumferential shortening (torsion-to-shortening ratio; TSR) during systole reflects the transmural distribution of contractile myofiber function. We investigated whether the transmural distribution of systolic contractile myofiber function changes with age. Magnetic resonance tissue tagging was performed to derive LV torsion and endocardial circumferential shortening. TSR was quantified in asymptomatic young [age 23.2 (SD 2.6) yr, n = 15] and aged volunteers [age 68.8 (SD 4.4) yr, n = 16]. TSR and its standard deviation were significantly elevated in the aged group [0.47 (SD 0.12) aged vs. 0.34 (SD 0.05) young; P = 0.0004]. In the aged group, blood pressure and the ratio of LV wall mass to end-diastolic volume were mildly elevated but could not be correlated to the increase in TSR. There were no significant differences in other indexes of systolic LV function such as end-systolic volume and ejection fraction. The elevated systolic TSR in the asymptomatic aged subjects suggests that aging is associated with local loss of contractile myofiber function in the subendocardium relative to the subepicardium potentially caused by subclinical pathological incidents.  相似文献   

15.
Familial hypertrophic cardiomyopathy is a clinically and genetically diverse autosomal dominant disorder characterized by ventricular hypertrophy and myocyte disarray in the absence of known hypertrophic stimuli. It has been linked to many cardiac contractile proteins, including four point mutations in alpha-tropomyosin (Tm). Here we use adenoviral-mediated gene transfer into adult cardiac myocytes in vitro to show that all four hypertrophic cardiomyopathy alpha-Tm proteins can be expressed and incorporated into normal sarcomeric structures in cardiac myocytes at similar levels as normal alpha-Tm proteins after 5-6 days in culture. Isometric force recordings of single cardiac myocytes demonstrated inappropriate increased force output at submaximal calcium concentration with a specific mutant allele hierarchy. These data indicate that the severity of direct calcium-sensitizing effect of mutations in alpha-Tm may predict the clinical severity of mutant alpha-Tm-associated hypertrophic cardiomyopathy.  相似文献   

16.
The assessment of contractile function of the right ventricle (RV) is an important clinical issue, but this remains difficult because of its complex anatomy and structure. We thought to investigate whether new Doppler-derived myocardial deformation indexes may quantify regional contractile RV function during varying loading conditions. In nine pigs, ultrasonic crystals were inserted longitudinally in the RV inflow and outflow tracts to assess regional contractile function. The same RV segments and the interventricular septum were imaged using apical echocardiographic views. Regional function was assessed using two parameters: 1) systolic strain (SS), representing the relative magnitude of segmental systolic shortening; and 2) its temporal derivative, peak systolic strain rate (SR), i.e., the maximal velocity of segmental shortening. Data were acquired at baseline and during partial pulmonary artery constriction (PAC) and inferior vena cava occlusion (IVCO). SS decreased significantly after PAC and IVCO in both the inflow and outflow tracts but only during IVCO in the septum. SR was less sensitive to loading variations in all segments. A significant correlation was found between SS values derived from sonomicrometry and myocardial Doppler in RV segments (r = 0.84, P < 0.001). Thus regional strain and SR provide complementary information on the heterogeneous RV contractile function and can be accurately and noninvasively quantified using Doppler myocardial imaging.  相似文献   

17.
The small G protein Ras-mediated signaling pathway has been implicated in the development of hypertrophy and diastolic dysfunction in the heart. Earlier cellular studies have suggested that the Ras pathway is responsible for reduced L-type calcium channel current and sarcoplasmic reticulum (SR) calcium uptake associated with sarcomere disorganization in neonatal cardiomyocytes. In the present study, we investigated the in vivo effects of Ras activation on cellular calcium handling and sarcomere organization in adult ventricular myocytes using a newly established transgenic mouse model with targeted expression of the H-Ras-v12 mutant. The transgenic hearts expressing activated Ras developed significant hypertrophy and postnatal lethal heart failure. In adult ventricular myocytes isolated from the transgenic hearts, the calcium transient was significantly depressed but membrane L-type calcium current was unchanged compared with control littermates. The expressions of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a and phospholamban (PLB) were significantly reduced at mRNA levels. The amount of SERCA2a protein was also modestly reduced. However, the expression of PLB protein and gross sarcomere organization remained unchanged in the hypertrophic Ras hearts, whereas Ser(16) phosphorylation of PLB was dramatically inhibited in the Ras transgenic hearts compared with controls. Hypophosphorylation of PLB was also associated with a significant induction of protein phosphatase 1 expression. Therefore, our results from this in vivo model system suggest that Ras-induced contractile defects do not involve decreased L-type calcium channel activities or disruption of sarcomere structure. Rather, suppressed SR calcium uptake due to reduced SERCA2a expression and hypophosphorylation of PLB due to changes in protein phosphatase expression may play important roles in the diastolic dysfunction of Ras-mediated hypertrophic cardiomyopathy.  相似文献   

18.
During mechanical ventilation, increased pulmonary vascular resistance (PVR) may decrease right ventricular (RV) performance. We hypothesized that volume loading, by reducing PVR, and, therefore, RV afterload, can limit this effect. Deep anesthesia was induced in 16 mongrel dogs (8 oleic acid-induced acute lung injury and 8 controls). We measured ventricular pressures, dimensions, and stroke volumes during positive end-expiratory pressures of 0, 6, 12, and 18 cmH(2)O at three left ventricular (LV) end-diastolic pressures (5, 12, and 18 mmHg). Oleic acid infusion (0.07 ml/kg) increased PVR and reduced respiratory system compliance (P < 0.05). With positive end-expiratory pressure, PVR was greater at a lower LV end-diastolic pressure. Increased PVR was associated with a decreased transseptal pressure gradient, suggesting that leftward septal shift contributed to decreased LV preload, in addition to that caused by external constraint. Volume loading reduced PVR; this was associated with improved RV output and an increased transseptal pressure gradient, which suggests that rightward septal shift contributed to the increased LV preload. If PVR is used to reflect RV afterload, volume loading appeared to reduce PVR, thereby improving RV and LV performance. The improvement in cardiac output was also associated with reduced external constraint to LV filling; since calculated PVR is inversely related to cardiac output, increased LV output would reduce PVR. In conclusion, our results, which suggest that PVR is an independent determinant of cardiac performance, but is also dependent on cardiac output, improve our understanding of the hemodynamic effects of volume loading in acute lung injury.  相似文献   

19.
Statistical data from clinical studies suggests that right ventricular (RV) circumferential strain (Ecc) and longitudinal strain (Ell) are significant biomarkers for many cardiovascular diseases. However, a detailed and regional characterization of these strains in the RV is very limited. In the current study, RV images were obtained with 3D spiral cine DENSE MRI in healthy rats. An algorithm for surface growing was proposed in order to fit irregular topology. Specifically, a new custom plugin for the DENSEanalysis program, called 3D DENSE Plugin for Crescent Organ, was developed for surface reconstruction and precise segmentation of organs with sharp curvature, such as the murine RV. The RV free wall (RVFW) was divided into three longitudinal thirds (i.e., basal, middle, and apical) with each one partitioned into circumferential fourths (i.e., anterior, anteriorlateral, inferiorlateral and inferior). Peak systolic strains were quantified for each segment and comparisons were performed statistically. The inclusion of a new plugin was able to generate global values for Ecc and Ell that are in good agreement with previous findings using MRI. Despite no regional variation found in the peak Ecc, the peak Ell exhibited regional variation at the anterior side of the RV, which is potentially due to differences in biventricular torsion at the RV insertion point and fiber architecture. These results provide fundamental insights into the regional contractile function of the RV in healthy rat and could act as a normative baseline for future studies on regional changes induced by disease or treatment.  相似文献   

20.
Familial hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease characterized by varying degrees of ventricular hypertrophy and myofibrillar disarray. Mutations in cardiac contractile proteins cause HCM. However, there is an unexplained wide variability in the clinical phenotype, and it is likely that there are multiple contributing factors. Because mitochondrial dysfunction has been described in heart disease, we tested the hypothesis that mitochondrial dysfunction contributes to the varying HCM phenotypes. Mitochondrial function was assessed in two transgenic models of HCM: mice with a mutant myosin heavy chain gene (MyHC) or with a mutant cardiac troponin T (R92Q) gene. Despite mitochondrial ultrastructural abnormalities in both models, the rate of state 3 respiration was significantly decreased only in the mutant MyHC mice by approximately 23%. Notably, this decrease in state 3 respiration preceded hemodynamic dysfunction. The maximum activity of alpha-ketogutarate dehydrogenase as assayed in isolated disrupted mitochondria was decreased by 28% compared with isolated control mitochondria. In addition, complexes I and IV were decreased in mutant MyHC transgenic mice. Inhibition of beta-adrenergic receptor kinase, which is elevated in mutant MyHC mouse hearts, can prevent mitochondrial respiratory impairment in mutant MyHC mice. Thus our results suggest that mitochondria may contribute to the hemodynamic dysfunction seen in some forms of HCM and offer a plausible mechanism responsible for some of the heterogeneity of the disease phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号