首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work examines the effects of potassium tellurite (K2TeO3) on the cell viability of the facultative phototroph Rhodobacter capsulatus. There was a growth mode-dependent response in which cultures anaerobically grown in the light tolerate the presence of up to 250 to 300 microg of tellurite (TeO3(2-)) per ml, while dark-grown aerobic cells were inhibited at tellurite levels as low as 2 microg/ml. The tellurite sensitivity of aerobic cultures was evident only for growth on minimal salt medium, whereas it was not seen during growth on complex medium. Notably, through the use of flow cytometry, we show that the cell membrane integrity was strongly affected by tellurite during the early growth phase (< or =50% viable cells); however, at the end of the growth period and in parallel with massive tellurite intracellular accumulation as elemental Te0 crystallites, recovery of cytoplasmic membrane integrity was apparent (> or =90% viable cells), which was supported by the development of a significant membrane potential (Deltapsi = 120 mV). These data are taken as evidence that in anaerobic aquatic habitats, the facultative phototroph R. capsulatus might act as a natural scavenger of the highly soluble and toxic oxyanion tellurite.  相似文献   

2.
Human erythrocytes exposed to 0.1 mM tellurite (K2TeO3) in an isotonic buffered choline chloride medium for 15 min at 37 degrees C, washed, and incubated further in the absence of the chemical in the buffer, exhibited selective leakiness for potassium within minutes. The potassium efflux curve was sigmoidal, with an initially slow leakage followed by a sharp rise (first-order kinetics) and a plateau by 60 min. After 15 min, 30-50% of the total potassium concentration had leaked from the cells, although less than 1% lysis had occurred. The control cells incubated in buffer with no K2TeO3 exhibited no potassium leakage. The mean volume of the K2TeO3-treated erythrocytes increased and their median density decreased, indicating changes in the colloid osmotic state and physical characteristics of the cells. However, cells pretreated with K2TeO3 exhibited no significant change in glutathione (GSH) concentration and no membrane lipid peroxidation, unlike cells pretreated with t-butylhydroperoxide (Deuticke et al., Biochim. Bio phys. Acta, 899, 125-128, 1987). The enhanced potassium permeability of the K2TeO3-treated erythrocytes preceded the increase in cell volume, intracellular hydration, and a decrease in median density. We suggest that perturbation of the lipid-protein interaction in the membrane by the oxidant alters the potassium permeability and results in the selective leakage with eventual hemolysis.  相似文献   

3.
The ars operon of the resistance plasmid R773 was found to produce moderate levels of resistance to tellurite. A MIC of 64 micrograms of TeO3(2-) per ml was found for Escherichia coli cells harboring plasmids which contained all three of the structural genes (arsA, arsB, and arsC) of the anion-translocating ATPase. MICs specified by plasmids carrying only one or two structural elements or the cloning vector alone were 2 to 4 micrograms/ml. The rate of TeO3(2-) uptake was found to be on the order of 55% less for cultures containing the resistance plasmids.  相似文献   

4.
We have identified intrinsic high-level resistance (HLR) to tellurite, selenite, and at least 15 other rare-earth oxides and oxyanions in the facultative photoheterotroph Rhodobacter sphaeroides grown either chemoheterotrophically or photoheterotrophically. Other members of the class Proteobacteria, including members of the alpha-2 and alpha-3 phylogenetic subgroups, were also shown to effect the reduction of many of these compounds, although genera from the alpha-1, beta-1, and gamma-3 subgroups did not express HLR to the oxyanions examined. Detailed analyses employing R. sphaeroides have shown that HLR to at least one class of these oxyanions, the tellurite class (e.g., tellurate, tellurite, selenate, selenite, and rhodium sesquioxide), occurred via intracellular oxyanion reduction and resulted in deposition of metal in the cytoplasmic membrane. The concomitant evolution of hydrogen gas from cells grown photoheterotrophically in the presence of these oxyanions was also observed. HLR to tellurite class oxyanions in R. sphaeroides was not affected by exogenous methionine or phosphate but was reduced 40-fold by the addition of cysteine to growth media. In contrast HLR to the periodate class oxyanions (e.g., periodate, siliconate, and siliconite) was inhibited by extracellular PO4(3-) but did not result in metal deposition or gas evolution. Finally, we observed that HLR to arsenate class oxyanions (e.g., arsenate, molybdate, and tungstate) occurred by a third, distinct mechanism, as evidenced by the lack of intracellular metal deposition and hydrogen gas evolution and an insensitivity to extracellular PO4(3-) or cysteine. Examination of a number of R. sphaeroides mutants has determined the obligate requirement for an intact CO2 fixation pathway and the presence of a functional photosynthetic electron transport chain to effect HLR to K2TeO3 under photosynthetic growth conditions, whereas functional cytochromes bc1 and c2 were required under aerobic growth conditions to facilitate HLR. Finally, a purification scheme to recover metals from intact bacterial cells was developed.  相似文献   

5.
6.
The facultative phototroph Rhodobacter capsulatus takes up the highly toxic oxyanion tellurite when grown under both photosynthetic and respiratory growth conditions. Previous works on Escherichia coli and R. capsulatus suggested that tellurite uptake occurred through a phosphate transporter. Here we present evidences indicating that tellurite enters R. capsulatus cells via a monocarboxylate transport system. Indeed, intracellular accumulation of tellurite was inhibited by the addition of monocarboxylates such as pyruvate, lactate and acetate, but not by dicarboxylates like malate or succinate. Acetate was the strongest tellurite uptake antagonist and this effect was concentration dependent, being already evident at 1 μM acetate. Conversely, tellurite at 100 μM was able to restrict the acetate entry into the cells. Both tellurite and acetate uptakes were energy dependent processes, since they were abolished by the protonophore FCCP and by the respiratory electron transport inhibitor KCN. Interestingly, cells grown on acetate, lactate or pyruvate showed a high level resistance to tellurite, whereas cells grown on malate or succinate proved to be very sensitive to the oxyanion. Taking these data together, we propose that: (a) tellurite enters R. capsulatus cells via an as yet uncharacterized monocarboxylate(s) transporter, (b) competition between acetate and tellurite results in a much higher level of tolerance against the oxyanion and (c) the toxic action of tellurite at the cytosolic level is significantly restricted by preventing tellurite uptake.  相似文献   

7.
The Escherichia coli chromosomal determinant for tellurite resistance consists of two genes (tehA and tehB) which, when expressed on a multicopy plasmid, confer resistance to K(2)TeO(3) at 128 microg/ml, compared to the MIC of 2 microg/ml for the wild type. TehB is a cytoplasmic protein which possesses three conserved motifs (I, II, and III) found in S-adenosyl-L-methionine (SAM)-dependent non-nucleic acid methyltransferases. Replacement of the conserved aspartate residue in motif I by asparagine or alanine, or of the conserved phenylalanine in motif II by tyrosine or alanine, decreased resistance to background levels. Our results are consistent with motifs I and II in TehB being involved in SAM binding. Additionally, conformational changes in TehB are observed upon binding of both tellurite and SAM. The hydrodynamic radius of TehB measured by dynamic light scattering showed a approximately 20% decrease upon binding of both tellurite and SAM. These data suggest that TehB utilizes a methyltransferase activity in the detoxification of tellurite.  相似文献   

8.
In Lactococcus lactis, the interactions between oxidative defense, metal metabolism, and respiratory metabolism are not fully understood. To provide an insight into these processes, we isolated and characterized mutants of L. lactis resistant to the oxidizing agent tellurite (TeO(3)(2-)), which generates superoxide radicals intracellularly. A collection of tellurite-resistant mutants was obtained using random transposon mutagenesis of L. lactis. These contained insertions in genes encoding a proton-coupled Mn(2+)/Fe(2+) transport homolog (mntH), the high-affinity phosphate transport system (pstABCDEF), a putative osmoprotectant uptake system (choQ), and a homolog of the oxidative defense regulator spx (trmA). The tellurite-resistant mutants all had better survival than the wild type following aerated growth. The mntH mutant was found to be impaired in Fe(2+) uptake, suggesting that MntH is a Fe(2+) transporter in L. lactis. This mutant is capable of carrying out respiration but does not generate as high a final pH and does not exhibit the long lag phase in the presence of hemin and oxygen that is characteristic of wild-type L. lactis. This study suggests that tellurite-resistant mutants also have increased resistance to oxidative stress and that intracellular Fe(2+) can heighten tellurite and oxygen toxicity.  相似文献   

9.
We present the tellurite bioassay (Te-Assay) as an alternative approach for quantification of cell viability. The Te-Assay was developed to pre-screen environmental samples for potential bacterial toxicants in which the reduction of tellurite to tellurium is used as a metabolic marker; black phenotype development only occurs in metabolically competent bacteria capable of reducing tellurite (TeO(3)(2-)) to elemental tellurium. The black and white phenotypes equate to nonsignificant or significant impediment of normal metabolic processes, thus permitting the rapid visual assessment of the relative toxicity of environmental samples. Bacterial inocula were exposed in 96-well plates to arrays of diluted analytes or environmental samples before addition of a tellurite to assess cell health/viability. Toxicity was quantified as the analyte concentration at which a 50% reduction in blackness occurred (IC(50)) compared to control wells containing no added analyte. No proprietary strains or reagents are required for Te-Assay, in which characterised strains or recent environmental isolates performed equally well. Strain selection was independent of tellurite-resistance provided that tellurite was reduced intracellularly by active non-growing cells.  相似文献   

10.
Klebsiella pneumoniae and Escherichia coli respond inversely toward P1 bacteriophage or TeO3(-2). Klebsiella pneumoniae is resistant to both antagonists and E. coli is sensitive. However, P1 cmts lysogens (P1 cmts resistant) of K. pneumoniae became sensitive to tellurite and when cured from P1 cmts regained resistance. Escherichia coli spontaneous mutants selected for resistance to either P1 or TeO3(-2) were collaterally resistant to the other. As well, TeO3(-3) enhanced the adsorption of P1 vir to both E. coli and K. pneumoniae. Several outer membrane proteins were enhanced in the K. pneumoniae lysogens and were reduced in E. coli lysogens; one of which was the same molecular weight (77 000) in both bacteria. When partially purified it enhanced the plaque efficiency of P1 vir. Lipopolysaccharide (LPS) from E. coli C600 inactivated P1 vir, but neither the P1 lysogens nor LPS derived from the lysogens inactivated P1 vir. Escherichia coli P1 lysogens produced only heptose-deficient LPS. It is suggested that both LPS and outer membrane protein(s) comprise the P1 receptor. TeO3(-2) may interact with one or both components.  相似文献   

11.
Eleven new complexes of formula [M(NN)(XO3)] (where M is Pd(II) or Pt(II); NN is 2,2'-bipyridine, 1,10-phenanthroline, 2,2'-dipyridylamine, ethylenediamine or (+-)trans-1,2-diaminocyclohexane, and XO3(2-) is SeO3(2-) or TeO3(2-)) have been synthesized. These water soluble complexes have been characterized by chemical analysis and conductivity measurements as well as ultraviolet-visible and infrared spectroscopy. In these complexes the selenite or tellurite ligand coordinates to platinum(II) or palladium(II) as bidentate with two oxygen atoms. These complexes inhibit the growth of P 388 lymphocytic leukemia cells, their targets are DNA. The selenite complexes invariably show I.D.50 values less than cisplatin. However, the I.D.50 values of the tellurite complexes are usually higher than cisplatin, except that of [Pd(dach)(TeO3)] which has comparable I.D.50 values, as compared to cisplatin. [Pt(bipy)(SeO3)] and [Pd(bipy)(SeO3)] have been interacted with calf thymus DNA and bind to DNA through a coordinate covalent bond.  相似文献   

12.
Tellurite (TeO3(2-)) is highly toxic to most microorganisms. The mechanisms of toxicity or resistance are poorly understood. It has been shown that tellurite rapidly depletes the reduced thiol content within wild-type Escherichia coli. We have shown that the presence of plasmid-borne tellurite-resistance determinants protects against general thiol oxidation by tellurite. In the present study we observe that the tellurite-dependent depletion of cellular thiols in mutants of the glutathione and thioredoxin thiol:redox system was less than in wild-type cells. To identify the type of low-molecular-weight thiol compounds affected by tellurite exposure, the thiol-containing molecules were analyzed by reverse phase HPLC as their monobromobimane derivatives. Results indicated that reduced glutathione is a major initial target of tellurite reactivity within the cell. Other thiol species are also targeted by tellurite, including reduced coenzyme A. The presence of the tellurite resistance determinants kilA and ter protect against the loss of reduced glutathione by as much as 60% over a 2 h exposure. This protection of glutathione oxidation is likely key to the resistance mechanism of these determinants. Additionally, the thiol oxidation response curves were compared between selenite and tellurite. The loss of thiol compounds within the cell recovered from selenite but not to tellurite.  相似文献   

13.
This study compares Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to the selenium and tellurium oxyanions selenite (SeO3(2-)), tellurate (TeO4(2-)), and tellurite (TeO3(2-)). P. aeruginosa planktonic and biofilm cultures reduced the selenium and tellurium oxyanions to orange and black end-products (respectively) and were equally tolerant to killing by these metalloid compounds. S. aureus planktonic cell cultures processed these metalloid oxyanions in a similar way, but the corresponding biofilm cultures did not. S. aureus biofilms were approximately two and five times more susceptible to killing by tellurate and tellurite (respectively) than the corresponding planktonic cultures. Our data indicate that the means of reducing metalloid oxyanions may differ between the physiology displayed in biofilm and planktonic cultures of the same bacterial strain.  相似文献   

14.
15.
D D Wykoff  E K O'Shea 《Genetics》2001,159(4):1491-1499
Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvation-inducible gene. We began these studies to determine the role of phosphate transporters in signaling phosphate starvation. Previous experiments demonstrated a defect in phosphate uptake in phosphate-starved pho84Delta cells; however, the pho84Delta strain expresses PHO5 constitutively when grown in phosphate-replete media. We determined that pho84Delta cells have a significant defect in phosphate uptake even when grown in high phosphate media. Overexpression of unrelated phosphate transporters or a glycerophosphoinositol transporter in the pho84Delta strain suppresses the PHO5 constitutive phenotype. These data suggest that PHO84 is not required for sensing phosphate. We further characterized putative phosphate transporters, identifying two new phosphate transporters, PHO90 and PHO91. A synthetic lethal phenotype was observed when five phosphate transporters were inactivated, and the contribution of each transporter to uptake in high phosphate conditions was determined. Finally, a PHO84-dependent compensation response was identified; the abundance of Pho84p at the plasma membrane increases in cells that are defective in other phosphate transporters.  相似文献   

16.
The highly toxic oxyanion tellurite has to enter the cytoplasm of microbial cells in order to fully express its toxicity. Here we show that in the phototroph Rhodobacter capsulatus, tellurite exploits acetate permease (ActP) to get into the cytoplasm and that the levels of resistance and uptake are linked.Tellurite exerts its toxic action in the cytoplasmic compartment mostly by triggering an increase in the generation of reactive oxygen species (ROS) (4, 5, 10). This implies that the acquisition of the oxyanion by the cell is a prerequisite for the full development of its toxicity and suggests, as a consequence, that diminished uptake would result in increased resistance.The link between tellurite uptake and toxicity in bacterial cells has been previously discussed in a limited number of reports (2, 3, 7). In Escherichia coli, it was shown that mutations in a phosphate transport system confer a high level of resistance to tellurite and that the oxyanion competes very efficiently for 32Pi transport (7). In the Gram-positive bacterium Lactococcus lactis, mutations associated with proteins PstA and PstD (phosphate transport), but also those associated with protein ChoQ (proline/glycine-betaine/carnitine/choline transport), were shown to confer a higher level of resistance relative to the wild type (8). Finally, in the phototrophic species Rhodobacter capsulatus it was suggested that a phosphate transporter might also be responsible for tellurite uptake (3). This hypothesis has recently been questioned because of the extremely high concentration of Pi needed to significantly inhibit tellurite uptake (2). Conversely, acetate was found to decrease the uptake of tellurite, when present at concentrations as low as 1 μM (2). This finding, along with the fact that lactate and pyruvate, but not malate and succinate, act similarly as competitors of tellurite uptake, led to the proposal that, in R. capsulatus, the oxyanion enters the cell via a monocarboxylate transport system (2).In this work, we show that an acetate transport system is utilized by tellurite to enter R. capsulatus cells and that limitation of this uptake drastically increases the resistance to the oxyanion.  相似文献   

17.
The highly toxic oxyanion tellurite (TeO3(2-)) is a well known pro-oxidant in mammalian and bacterial cells. This work examines the effects of tellurite on the redox state of the electron transport chain of the facultative phototroph Rhodobacter capsulatus, in relation to the role of the thiol:disulfide oxidoreductase DsbB. Under steady-state respiration, the addition of tellurite (2.5 mM) to membrane fragments generated an extrareduction of the cytochrome pool (c- and b-type hemes); further, in plasma membranes exposed to tellurite (0.25 to 2.5 mM) and subjected to a series of flashes of light, the rate of the QH2:cytochrome c (Cyt c) oxidoreductase activity was enhanced. The effect of tellurite was blocked by the antibiotics antimycin A and/or myxothiazol, specific inhibitors of the QH2:Cyt c oxidoreductase, and, most interestingly, the membrane-associated thiol:disulfide oxidoreductase DsbB was required to mediate the redox unbalance produced by the oxyanion. Indeed, this phenomenon was absent from R. capsulatus MD22, a DsbB-deficient mutant, whereas the tellurite effect was present in membranes from MD22/pDsbB(WT), in which the mutant gene was complemented to regain the wild-type DsbB phenotype. These findings were taken as evidence that the membrane-bound thiol:disulfide oxidoreductase DsbB acts as an "electron conduit" between the hydrophilic metalloid and the lipid-embedded Q pool, so that in habitats contaminated with subinhibitory amounts of Te(IV), the metalloid is likely to function as a disposal for the excess reducing power at the Q-pool level of facultative phototrophic bacteria.  相似文献   

18.
We have used liposomes with incorporated pig kidney Na+,K(+)-ATPase to study vanadate sensitive K(+)-K+ exchange and net K+ uptake under conditions of acetyl- and p-nitrophenyl phosphatase activities. The experiments were performed at 20 degrees C. Cytoplasmic phosphate contamination was minimized with a phosphate trapping system based on glycogen, phosphorylase a and glucose-6-phosphate dehydrogenase. In the absence of Mg2+ (no phosphatase activity) 5-10 mM p-nitrophenyl phosphate slightly stimulated K(+)-K+ exchange whereas 5-10 mM acetyl phosphate did not. In the presence of 3 mM MgCl2 (high rate of phosphatase activity) acetyl phosphate did not affect K(+)-K+ exchange whereas p-nitrophenyl phosphate induced a greater stimulation than in the absence of Mg2+; a further addition of 1 mM ADP resulted in a 35-65% inhibition of phosphatase activity with an increase in K(+)-K+ exchange, which sometimes reached the levels seen with 5 mM phosphate and 1 mM ADP. The net K+ uptake in the presence of 3 mM MgCl2 was not affected by acetyl phosphate or p-nitrophenyl phosphate, whereas it was inhibited by 5 mM phosphate (with and without 1 mM ADP). The results of this work suggest that the phosphatase reaction is not by itself associated to K+ translocation. The ADP-dependent stimulation of K(+)-K+ exchange in the presence of phosphatase activity could be explained by the overlapping of one or more step/s of the reversible phosphorylation from phosphate with the phosphatase cycle.  相似文献   

19.
Most of our understanding of the physiology of microorganisms is the result of investigations in pure culture. However, in order to understand complex environmental processes, there is a need to investigate mixed microbial communities. This is true for enhanced biological phosphorus removal (EBPR), an environmental process that results in the enrichment of the polyphosphate-accumulating organism Accumulibacter spp. and the glycogen non-polyphosphate accumulating organism Defluviicoccus spp. We investigated acetate and inorganic phosphate (P(i)) uptake in enrichments of Accumulibacter spp. and acetate uptake in enrichments of Defluviicoccus spp. For both enrichments, anaerobic acetate uptake assays in the presence of the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the membrane potential (Delta psi) uncoupler valinomycin, indicated that acetate is likely to be taken up by a permease-mediated process driven by the Delta psi. Further investigation with the sodium ionophore monensin suggested that anaerobic acetate uptake by Defluviicoccus spp. may in part be dependent on a sodium potential. Results of this study also suggest that Accumulibacter spp. generate a proton motive force (pmf or Delta p) for anaerobic acetate uptake by efflux of protons in symport with P(i) through an inorganic phosphate transport (Pit) system. In contrast, we suggest that the anaerobic Delta p in Defluviicoccus spp. is generated by an efflux of protons across the cell membrane by the fumarate respiratory system, or by extrusion of sodium ions via decarboxylation of methylmalonyl-CoA. Aerobic P(i) uptake by the Accumulibacter spp. enrichment was strongly inhibited in the presence of an ATPase inhibitor, suggesting that the phosphate-specific transport (Pst) system is important even under relatively high concentrations of P(i). Acetate permease activity in these microorganisms may play an important role in the competition for acetate in the often acetate-limited EBPR process. Activity of a high-velocity Pst system in Accumulibacter spp. may further explain its ability to compete strongly in EBPR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号