首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 552 毫秒
1.
The drug-resistant bacterial strains' emergence increases day by day. This may be a result of biofilm presence, which protects bacteria from antimicrobial agents. Thus, new approaches must be used to control biofilm-related infections in healthcare settings. In such a study, biological silver nanoparticles were introduced in such a study as an anti-biofilm agent against multidrug-resistant E. coli U12 on urinary catheters. Seven different silver nanoparticles concentrations were tested for their antimicrobial activities. Also, anti-biofilm activities against E. coli U12 were tested. Using the dilution method, the silver nanoparticles concentration of 85 μg/ml was the MIC (Minimum Inhibitory Concentration) that had excellent biocompatibility and showed significant antibacterial activity against E. coli U12. Scanning electron microscopy (SEM) confirmed that the highest efficient dose of silver nanoparticles was 340 μg/ml at 144 h that reduced adhesion of E. coli U12 to the urinary catheter. E. coli U12 cells ruptured cell walls and cell membranes after being examined using transmission electron microscopy (TEM). Thus, biologically prepared silver nanoparticles could be used to coat medical devices since it is effective and promising to inhibit biofilm formation by impregnating urinary catheters with silver nanoparticles.  相似文献   

2.
The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.  相似文献   

3.
The need for more effective antimicrobial agent and propitious application of nanotechnology in therapeutics and diagnostics has prompted the research on ecofriendly synthesis of silver nanoparticles. The objective of present study was to investigate the antibacterial and antifungal activity of biologically synthesized silver nanoparticles. The silver nanoparticles were synthesized by extracellular method, using soil bacteria Kocuria rosea. The synthesized silver nanoparticles were characterized by UV-Visible spectroscopy, X-ray diffractometry (XRD), transmission electron microscopy (TEM) and fourier transformation infrared spectroscopy (FTIR). On the basis of TEM analysis, the synthesized nanoparticles were found to be spherical with an average size of 30–50 nm. The biologically synthesized silver nanoparticles showed significant antimicrobial activity against pathogens.  相似文献   

4.
The purpose of this study was the evaluation of two different temperatures on antibacterial activity of the biosynthesized silver nanoparticles. 38 silver nanoparticles-producing bacteria were isolated from soil and identified. Biosynthesis of silver nanoparticles by these bacteria was verified through visible light spectrophotometry. Two strains were relatively active for production of silver nanoparticles. These strains were subjected for molecular identification and recognized as Bacillus sp. and Acinetobacter schindleri. In the present study, the effect of temperatures was evaluated on structure and antimicrobial properties of the silver nanoparrticles by transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis and antimicrobial Agar well diffusion methods. The silver nanoparticles showed antibacterial activity against all the pathogenic bacteria; however, this property was lost after treatment of the silver nanoparticles by high temperatures (100 and 300 °C). TEM images showed that the average sizes of heated silver nanoparticles were >100 nm. However, these were <100 nm for non-heated silver nanoparticles. Although, XRD patterns showed the crystalline structure of heated silver nanoparticles, their antibacterial activities were less. This was possible because of the sizes and accordingly less penetration of the particles into the bacterial cells. In addition, elimination of the capping agents by heat might be considered another reason.  相似文献   

5.
A simple and green method was developed for the extracellular biosynthesis of silver chloride nanoparticles, free from silver nanoparticles, using cell-free filtrate of a thermotolerant fungal strain Aspergillus terreus 8. The synthesized silver chloride nanoparticles exhibited characteristic absorption maximum at 275 nm. As-fabricated AgCl-NPs were characterized by UV-vis spectroscopy, XRD, SEM-EDX, and FT-IR. The biosynthesized silver chloride nanoparticles exhibited strong antimicrobial activity towards pathogenic microorganisms such as Fusarium oxysporum f. sp. vasinfectum and Verticillium dahliae. The synthesized silver chloride nanoparticles can be exploited as a promising new biocide bionanocomposite against pathogenic microorganisms.  相似文献   

6.
Central composite design was chosen to determine the combined effects of four process variables (AgNO3 concentration, incubation period, pH level and inoculum size) on the extracellular biosynthesis of silver nanoparticles (AgNPs) by Streptomyces viridochromogenes. Statistical analysis of the results showed that incubation period, initial pH level and inoculum size had significant effects (P<0.05) on the biosynthesis of silver nanoparticles at their individual level. The maximum biosynthesis of silver nanoparticles was achieved at a concentration of 0.5% (v/v) of 1 mM AgNO3, incubation period of 96 h, initial pH of 9 and inoculum size of 2% (v/v). After optimization, the biosynthesis of silver nanoparticles was improved by approximately 5-fold as compared to that of the unoptimized conditions. The synthetic process of silver nanoparticle generation using the reduction of aqueous Ag+ ion by the culture supernatants of S. viridochromogenes was quite fast, and silver nanoparticles were formed immediately by the addition of AgNO3 solution (1 mM) to the cell-free supernatant. Initial characterization of silver nanoparticles was performed by visual observation of color change from yellow to intense brown color. UV-visible spectrophotometry for measuring surface plasmon resonance showed a single absorption peak at 400 nm, which confirmed the presence of silver nanoparticles. Fourier Transform Infrared Spectroscopy analysis provided evidence for proteins as possible reducing and capping agents for stabilizing the nanoparticles. Transmission Electron Microscopy revealed the extracellular formation of spherical silver nanoparticles in the size range of 2.15–7.27 nm. Compared to the cell-free supernatant, the biosynthesized AgNPs revealed superior antimicrobial activity against Gram-negative, Gram-positive bacterial strains and Candida albicans.  相似文献   

7.
The present study focused on the green synthesis of silver nanoparticles from Coriander sativum (CS) containing structural polymers, phenolic compounds and glycosidic bioactive macromolecules. Plant phenolic compounds can act as antioxidants, lignin, and attractants like flavonoids and carotenoids. Henceforth, silver nanoparticles (AgNPs) were prepared extracellularly by the combinatorial action of stabilizing and reduction of the CS leaf extract. The biologically synthesized CS-AgNPs were studied by UV-spectroscopy, zeta potential determination, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis to characterize and confirm the formation of crystalline nanoparticles. The synthesized nanoparticles demonstrated strong antimicrobial activity against all microbial strains examined with varying degrees. The scavenging action on free radicals by CS-AgNPs showed strong antioxidant efficiency with superoxide and hydroxyl radicals at different concentrations as compared with standard ascorbic acid. The presence of in vitro anticancer effect was confirmed at different concentrations on the MCF-7 cell line as revealed with decrease in cell viability which was proportionately related to the concentration of CS-AgNPs illustrating the toxigenic nature of synthesized nanoparticles on cancerous cells.  相似文献   

8.
The aim of this study was to biosynthesis silver nanoparticles from the fungus Nigrospora sphaerica isolated from soil samples and to examine their activity against five human pathogenic strains of bacteria viz. Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella typhi and Staphylococcus aureus using disc diffusion method. The synergistic effect of silver nanoparticles in combination with commonly used antibiotic Gentamycin against the selected bacteria was also examined. The synthesized silver nanoparticles from free-cell filtrate were characterized by using UV–Vis spectrophotometer analysis, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). UV–Vis spectrophotometer analysis showed a peak at 420 nm indicating the synthesis of silver nanoparticles, FTIR analysis verified the detection of protein capping of silver nanoparticles while SEM micrographs revealed that the silver nanoparticles are dispersed and aggregated and mostly having spherical shape within the size range between 20 and 70 nm. The synthesized silver nanoparticles exhibited a varied growth inhibition activity (15–26 mm diam inhibition zones) against the tested pathogenic bacteria. A remarkable increase of bacterial growth inhibition (26–34 mm diam) was detected when a combination of silver nanoparticles and Gentamycin was used. A significant increase in fold area of antibacterial activity was observed when AgNPs in combination with Gentamycin was applied. The synthesized silver nanoparticles produced by the fungus N. sphaerica is a promising to be used as safe drug in medical therapy due to their broad spectrum against pathogenic bacteria.  相似文献   

9.
The aim of this study was to examine the antimicrobial efficiency and color changes of cotton fabrics loaded with colloidal silver nanoparticles which were synthesized without using any stabilizer. The influence of colloidal concentration and consequently, the amount of silver deposited onto the fabric surface, on antimicrobial activity against Gram-negative bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus and fungus Candida albicans as well as laundering durability of obtained effects were studied. Although cotton fabrics loaded with silver nanoparticles from 10 ppm colloid exhibited good antimicrobial efficiency, their poor laundering durability indicated that higher concentrated colloids (50 ppm) must be applied for obtaining long-term durability. Additionally, the influence of dyeing with C.I. Direct Red 81 on antimicrobial activity of cotton fabrics loaded with silver nanoparticles as well as the influence of their presence on the color change of dyed fabrics were evaluated. Unlike color change, the antimicrobial efficiency was not affected by the order of dyeing and loading of silver nanoparticles.  相似文献   

10.
Juniperus spp. are used as medicinal plants in many countries like Bosnia, Lebanon, and Turkey. In folk medicines, these plants have been used for treating skin and respiratory tract diseases, urinary problems, rheumatism and gall bladder stones. The objectives of this work were to synthesize silver nanoparticles (AgNPs) using a coniferous tree, Juniperus procera leaf extract and testing the synthesized AgNPs for its antimicrobial potentials, hemolytic activity, toxicity and the proliferative effects against normal and activated rat splenic cells. Leaf extract was prepared using acetone and ethanol as solvents. AgNPs were prepared using the acetone extract. AgNPs were validated using UV–Vis spectroscopy and scanning electron microscopy (SEM). Functional groups in the extract were identified using Fourier Transform Infrared (FT-IR) spectroscopy. SEM images of AgNPs showed spherical and cubic shapes with a uniform size distribution with an average size of 30–90 nm. FT-IR spectroscopy showed the presence of many functional groups in the plant extract. AgNPs showed promising antimicrobial activity against tested bacteria and fungus. AgNPs also expressed a stimulating activity towards the rat splenic cells in a dose dependent manner. Acetone as solvent was safer on cells than ethanol. Green synthesized AgNPs using J. procera might be used as a broad-spectrum therapeutic agent against microorganisms and as an immunostimulant agent.  相似文献   

11.
The plant Cassia angustifolia belongs to Saudi Arabia, which is one of the native places and now cultured throughout the global countries. Medical care in the Arab world is an essential outlet for medicinal plants, both because they are crucial elements for prophetic medicine and due to their lengthy background in the Middle East. C.angustifolia is one of the medicinal plants used in the Saudi Arabia. The usage of plant extracts for synthesizing nanoparticles is conducive to other biological material, since it avoids the lengthy phase of cell culture maintenance. Silver nanoparticles attract further attention due to their strong conductivity, stability and antimicrobial activity across different metal nanoparticles. The present study was designed in the Saudi C. angustifolia leaves with the zinc synthesis of nanoparticles and its antibacterial ability. The plant extracts of C. angustifolia was used for synthesis of zinc nanoparticles, antimicrobial activities against bacterial strains have been tested along with transmission electron microscope (TEM), UV spectroscopy and antimicrobial activities have been conducted. This study showed that silver ions may be transferred from the plant extract to silver nanoparticles. AgNPs biogenic capacity to antibacterial with lovo cell with IC50 ranged from 33.5 ± 0.2 μg/mL demonstrated strong antibacterial capacity to antibody. The overall absorption value for the extract was between 420 and 440 nm and the color transition to green was the plasma absorption of the AgNPs. TEM results was showed in 200,000 magnification. The uniqueness of the current study is that Cassia angustifolia leaf extract from Saudi Arabia was used to prepare the metallic nanoparticles. Additionally, ZnCl2 may also be used as nanoparticles of mineral salt and zinc, which, since their application has been confirmed, are antimicrobial.  相似文献   

12.
The present study describes the biosynthesis of silver nanoparticles, using the fungus Penicillium verrucosum. The silver nanoparticles were synthesised by reacting silver nitrate (AgNO3) with the cell free filtrates of the fungal culture, and were then characterized by UV–visible spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive, and X-ray diffraction analysis to further evaluate their successful biosynthesis, optical and morphological features (size and shape), and crystallinity. The bioactivity of the synthesized nanoparticles against two phytopathogenic fungi i.e: Fusarium chlamydosporum and Aspergillus flavus was evaluated using nanomaterial seeding media. These biogenic silver nanoparticles were polydisperse in nature, with a size of 10–12 nm. With regard to the antifungal activity, 150 ppm of the nanoparticles suppressed the growth of F. chlamydosporum and A. flavus by about 50%. To the best of our knowledge, this is the first report on the use of P. verrucosum to synthesise silver nanoparticles. The present study demonstrates a novel, simple, and eco-friendly process for the generation of biofunctionally useful biogenic nanoparticles.  相似文献   

13.
Scutellaria barbata is a perennial herb which was vastly prescribed in Chinese medicine to treat inflammations, infections and it is also used a detoxifying agent. We synthesized silver nanoparticles with Scutellaria barbata extract and characterized the nanoparticles with UV–Vis spectroscopic analysis, TEM, AFM, FTIR and XRD. The biofilm inhibiting property of synthesized silver nanoparticles were examined with XTT reduction assay and the antimicrobial property was examined with well diffusion method. The silver nanoparticles were also coated with cotton fabrics and their efficacy against antimicrobials was analyzed to prove its application. The cytotoxic property of synthesized silver nanoparticles was examined with L929 fibroblast cells using MTT assay. Finally we analyzed the wound healing property of synthesized silver nanoparticles with wound scratch assay. The result of our UV–Vis spectroscopic analysis confirms Scutellaria barbata aqueous extract reduced silver ions and synthesized silver nanoparticles. The characterization studies TEM, AFM, FTIR and XRD confirms the synthesized silver nanoparticles are in ideal shape and size to be utilized as a drug. The XTT reduction assay proves silver nanoparticles effectively inhibits the biofilm formation in both resistant and sensitive strains. Antimicrobial sensitivity tests confirms synthesized silver nanoparticles and cotton coated synthesized silver nanoparticles both are effective against gram positive, gram negative and fungal species. Further the results of MTT assay confirms the synthesized silver nanoparticles are non toxic and finally the wound healing potency of the nanoparticles was confirmed with wound scratch assay. Over all our results authentically confirms the silver nanoparticles synthesized with Scutellaria barbata aqueous extract is potent wound healing drug.  相似文献   

14.
The present study is to investigate the antitumor, antioxidant and antibacterial potential of silver nanoparticles (Ag NPs) synthesized from a phenolic derivative 4-N-methyl benzoic acid, isolated from a medicinal plant (Memecylon umbellatum Burm F). The Bio-inspired nanoparticles (NPs) were analyzed by using UV–vis spectroscopy, FTIR, HRTEM, Zeta potential and XRD techniques. The UV–vis spectroscopy study at the band of 430 nm confirmed the nanoparticles formation. HRTEM report showed that the AgNPs synthesized were in the size range 7–23 nm. The harvested nanoparticles were subjected to anti-bacterial assay and a dose dependent inhibitory action was observed against the tested human pathogens. Among the tested bacteria, Acinetobacter baumannii was found to be highly sensitive to AgNPs (diameter of zone of inhibition was 31 mm). Further, the silver nanoparticles exhibited a good anti-tumor activity against the breast cancer cell line (MCF 7) with an IC50 value of 42.19 µg/mL. As the present study confirmed a good antibacterial, antioxidant and antitumor activity in the nanoparticles synthesized using 4-N-methyl benzoic acid derived from a medicinal plant, the product can be further tested to formulate a good lead compound for biomedical applications.  相似文献   

15.
In our study, green synthesis of silver nanoparticles was carried out using a red algae Gelidium corneum extract as reducing agent. The obtained silver nanoparticles were characterized by UV–vis, TEM, XRD, FTIR and ICP-MS measurements. FTIR measurements indicated the possible functional groups responsible for the stabilization and reduction of nanoparticles, while XRD analysis results explained the crystalline structure of the particles with centric cubic geometry. TEM micrographs showed that the size of the nanoparticles was between 20–50 nm. According to the broth microdilution test results, AgNPs showed a high antimicrobial activity with very low MIC values (0.51 μg/ml for Candida albicans yeast and 0.26 μg/ml for Escherichia coli bacteria). The different ultrastructural effects of silver nanoparticles on yeast and bacterial cells were observed by TEM. Antibiofilm efficacy studies were also examined in two stages as prebiofilm and postbiofilm effect. In prebiofilm effect studies, AgNPs (0.51 μg/ ml) exhibited 81% reducing effect on biofilm formation. The highest reduction rate in postbiofilm studies was 73.5% and this was achieved with 2.04 μg/ml AgNPs. Our data support that the silver nanoparticles obtained by this environmentally friendly process have potential to be used for industrial and therapeutic purposes.  相似文献   

16.
In the search for alternative therapy for infections and other ailments, metallic nanoparticles, mainly silver nanoparticles (AgNPs) synthesized through bioengineered sources are extensively explored. Fungal bioactive compounds and their nanoparticles were reported with the potential biomedical application. A medicinal mushroom Ganoderma lucidum was reported as a repository of rich medicinal properties. In the current study, silver nanoparticles were synthesized using the extracts of G. lucidum and its antimicrobial activity was tested against drug-resistant Escherichia coli isolated from the catheter used for urinary tract infection (CAUTI). The GC–MS study of G. lucidum extracts showed the presence of ethyl acetoacetate ethylene acetal with the highest area percentage of 72.2% and retention time (RT 5873). Pyridine-3-ol is the second primary compound with a peak height of 6.44% and a retention time of 2.143. The third compound is l,4-Dioxane-2,3-diol, with an area of 8.09% and RT 5450. Butylated Hydroxy Toluene [BHT] is the fourth major compound with an area of 3.32%, and 9-Cedranone constitutes the fifth position in occupying the area percentage [1.88] and height 1.56%. Pyrrole is the sixth primary compound registering an area size of 0.96% and height 2.06%. The AgNPs synthesized using G. lucidum extract were in size range 23 and 58 nm as per SEM analysis and within the range wavelength 0.556–0.796 nm as per UV–Vis spectral study. FTIR Spectroscopy and X-ray diffraction analysis (XRD) were made to characterize the formed nanoparticles. The AgNPs synthesized effectively inhibited the growth of E. coli isolated from catheter-associated urinary tract infection and showed resistance to many drugs. The antioxidant potential of the synthesized nanoparticles assessed using DPPH radical scavenging activity, EC50 (µg/ml), and ARP data showed that the prepared nanoparticles were more potent in free radical scavenging activity than the standard quercetin. The cytotoxicity effect of Ag-NPs on breast cancer cell line- MDA-MB-231 confirmed its anticancer potential. The half-maximal inhibitory concentration (IC50) of Ag-NPs to inhibit 50% of the tumor was 9.2 g/mL. The synthesized GL-AgNPs was exhibited a multifocal biomedical potential.  相似文献   

17.
The agricultural wastes adversely affect the environment; however, they are rich in polyphenols; therefore, this study aimed to employ polyphenol-enriched waste extracts for silver nanoparticles synthesis, and study the larvicidal activity of silver nanoparticles fabricated by pomegranate and watermelon peels extracts (PPAgNPs and WPAgNPs) against all larval instars of Spodoptera littoralis. The polyphenol profile of pomegranate and watermelon peel extracts (PP and WP) and silver nanoparticles was detected by HPLC. The antioxidant activity was estimated by DPPH, and FARP assays and the antimicrobial activity was evaluated by disc assay. The Larvicidal activity of AgNPs against Egyptian leaf worm was performed by dipping technique. The obtained AgNPs were spherical with size ranged 15–85 nm and capped with proteins and polyphenols. The phenolic compounds in silver nanoparticles increased about extracts; therefore, they have the best performance in antioxidant/reducing activity, and inhibit the growth of tested bacteria and yeast. The PPAgNPs were the most effective against the first instar larvae instar (LC50 = 68.32 µg/ml), followed by pomegranate extract with (LC50 = 2852 µg/ml). The results indicated that obvious increase in polyphenols content in silver nanoparticles enhance their larvicidal effect and increasing mortality of 1st larval of S. littoralis Egyptian leafworms causing additive effect and synergism. We recommend recycling phenolic enriched agricultural wastes in producing green silver nanoprticles to control cotton leafworm that causes economic loses to crops.  相似文献   

18.
Green synthesis of nanoparticles has gained significant importance in recent years and has become the one of the most preferred methods. Also, green synthesis of nanoparticles is valuable branch of nanotechnology. Plant extracts are eco-friendly and can be an economic option for synthesis of nanoparticles. This study presents method the synthesis of silver nanoparticles using water extract of Arnicae anthodium. Formation of silver nanoparticles was confirmed by UV–visble spectroscopy, Fourier transform infrared spectroscopy and total reflection X-ray fluorescence analysis. The morphology of the synthesized silver nanoparticles was verified by SEM–EDS. The obtained silver nanoparticles were used to study their antimicrobial activity.  相似文献   

19.
In the present study the characterization and properties of silver nanoparticles from Prosopis glandulosa leaf extract (AgNPs) were investigated using UV–Vis spectroscopic techniques, energy dispersive X-ray spectrometers (EDS), zeta potential and dynamic light scattering. The UV–Vis spectroscopic analysis showed the absorbance peaked at 487 nm, which indicated the synthesis of silver nanoparticles. The experimental results showed silver nanoparticles had Z-average diameter of 421 nm with higher stability (?200 mV). The EDS analysis also exhibited presentation of silver element. Additionally, the different concentrations of AgNPs (25, 50, 75 and 100 mg/mL) showed antibacterial activity against Acinetobacter calcoaceticus and Bacillus cereus. Finally, AgNPs from leaf extracts of P. glandulosa may be used as an agent of biocontrol of microorganism of importance medical. However, further studies will be needed to fully understand the antimicrobial activity of silver nanoparticles obtain from P. glandulosa.  相似文献   

20.
American foulbrood (AFB) and European foulbrood (EFB) are the two major bacterial diseases affecting honeybees, leading to a decrease in viability of the hive, decreasing honey production, and resulting in significant economic losses to beekeepers. Due to the inefficiency and/or low efficacy of some antibiotics, researches with nanotechnology represent, possibly, new therapeutic strategies. Nanostructure drugs have presented some advantagesover the conventional medicines, such as slow, gradual and controlled release, increased bioavailability, and reduced side-effects. In this study, different infected larvae were collected from two apiaries; the combs that had symptoms of American and European foulbrood were isolated. In vitro antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases were characterized using UV–Vis spectrophotometry and scanning electron microscope (SEM) that proves the formation of silver nanoparticles with size range 160–660 nm. The antimicrobial activity of the silver nanoparticles was tested using agar diffusion assay and proved their ability to effectively cease the pathogenic bacterial growth in both AFB and EFB. DGGE-PCR technique has been applied for the identification of un-common bacterial infections honeybees depending on 16S rRNA amplification from their total extracted DNA and has been identified as Serratia marcescens (TES), deposited in GenBank with a new accession number (MT240613). The results were confirmed strain has been detected by DGGE-PCR analysis causing uniquely infected brood that was attacked by the American Foulbrood It could be concluded that greenly synthesized silver nanoparticles is projected to be used as effective treatment for honeybee bacterial diseases. These material need more investigations under field conditions and study the possibility of its residues in honeybee products such as honey, and beeswax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号