首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Al-Dhaheri MH  Shah YM  Basrur V  Pind S  Rowan BG 《Steroids》2006,71(11-12):966-978
Tamoxifen is currently used as adjuvant therapy for estrogen receptor (ER) positive breast cancer patients and as a chemopreventative agent. Although ER is a predictive marker for tamoxifen response, ER status fails to predict tamoxifen response in a significant number of patients highlighting the need to identify new pathways for tamoxifen sensitivity/resistance. To identify novel proteins induced by tamoxifen in breast cancer cells sensitive to tamoxifen growth inhibition, two-dimensional (2D) gel electrophoresis was used to profile proteins in T47D breast cancer cells. Six proteins were identified that were differentially regulated by 17beta-estradiol, 4-hydroxytamoxifen and the pure antagonist acolbifene (EM-652); calreticulin, synapse associated protein 1 (SYAP1), CD2 antigen binding protein 2 (CD2BP2), nucleosome assembly protein 1 like 1 (NAP1L1), d-3-phosphoglycerate dehydrogenase (3-PHGDH) and pyridoxine 5' phosphate oxidase (PNPO). At the mRNA level, these ligands differentially regulated expression of mRNAs encoding the identified proteins in T47D and MCF7 cells but had no effect on mRNA in ERalpha-negative MDA-MB-231 breast cancer cells. These novel SERM-regulated proteins may participate in new or existing pathways for sensitivity or resistance to SERMs.  相似文献   

4.
5.
Superoxide dismutase (SOD) occurs in two intracellular forms in mammals, copper–zinc SOD (CuZnSOD), found in the cytoplasm, mitochondria and nucleus, and manganese superoxide dismutase (MnSOD), in mitochondria. Changes in MnSOD expression (as compared to normal cells) have been reported in several forms of cancer, and these changes have been associated with regulation of cell proliferation, cell death, and metastasis. We have found that progestins stimulate MnSOD in T47D human breast cancer cells in a time and physiological concentration-dependent manner, exhibiting specificity for progestins and inhibition by the antiprogestin RU486. Progestin stimulation occurs at the level of mRNA, protein, and enzyme activity. Cycloheximide inhibits stimulation at the mRNA level, suggesting that progestin induction of MnSOD mRNA depends on synthesis of protein. Experiments with the MEK inhibitor UO126 suggest involvement of the MAP kinase signal transduction pathway. Finally, MnSOD-directed siRNA lowers progestin-stimulated MnSOD and inhibits progestin stimulation of migration and invasion, suggesting that up-regulation of MnSOD may be involved in the mechanism of progestin stimulation of invasive properties. To our knowledge, this is the first characterization of progestin stimulation of MnSOD in human breast cancer cells.  相似文献   

6.
Vasopressin-activated calcium-mobilizing (VACM-1), a cul-5 gene, is localized on chromosome 11q22-23 close to the gene for Ataxia Telangiectasia in a region associated with a loss of heterozygosity in breast cancer tumor samples. To examine the biological role of VACM-1, we studied the effect of VACM-1 expression on cellular growth and gene expression in T47D breast cancer cells. Immunocytochemistry studies demonstrated that VACM-1 was expressed in 0.6-6% of the T47D cells and localized to the nucleus of mitotic cells. Overexpressing VACM-1 significantly attenuated cellular proliferation and MAPK phosphorylation when compared to the control cells. In addition, VACM-1 decreased egr-1 and increased Fas-L mRNA levels. Further, egr-1 protein levels were significantly lower in the nuclear fraction from VACM-1 transfected cells when compared to controls. These data indicate that VACM-1 is involved in the regulation of cellular growth.  相似文献   

7.
Using a combination of hormone-binding assays, immunologic techniques, and mRNA hybridizations we have measured the estrogen receptor (ER) content and studied the hormonal regulation of ER mRNA in one estrogen responsive and one estrogen unresponsive breast cancer cell line, MCF-7 and T47Dco, respectively. Estradiol binding could be detected in cytosol from MCF-7 cells but not in T47Dco cells. However, when measured by an enzyme-linked immunosorbent assay, T47Dco cells were found to contain approximately 15 fmol ER/mg cytosolic protein or 10% of the ER content in MCF-7 cells. Immunologically reactive ER in T47Dco cells was indistinguishable in size (approximately equal to 68 KD) from the ER in MCF-7 cells, as shown by Western blotting using a monoclonal antihuman ER antibody. Quantification of ER mRNA in MCF-7 and T47Dco cells indicated that T47Dco cells contained approximately 50% of the ER mRNA levels found in MCF-7 cells. This basal level of ER mRNA in T47Dco cells was not decreased by estradiol treatment, as opposed to in MCF-7 cells where estradiol caused 40-60% decrease in the ER mRNA expression. Also, estradiol did not increase the progesterone receptor (PR) mRNA levels in T47Dco cells whereas in MCF-7 cells an approximately 5-fold increase of the PR mRNA levels occurred after estradiol treatment. However, incubation of the cells with the synthetic progestin R5020 decreased the ER mRNA levels to approximately the same degree in both cell lines. In conclusion, we have shown that estrogen down-regulates ER mRNA and up-regulates PR mRNA in MCF-7 cells. Neither of these estrogenic effects were seen in T47Dco cells. It appears that the steroid-resistance in T47Dco cells does not occur as a consequence of a complete absence of ER mRNA or protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have examined the effects of estrogen and progestin agonist and antagonist ligands on regulation of progesterone receptor (PR) protein and mRNA levels in a variety of human breast cancer cell lines. By Northern blot analysis, using human PR cDNA probes, PR mRNA in T47D and MCF-7 cells appears as five species of approximately 11.4, 5.8, 5.3, 3.5, and 2.8 kilobases. PR mRNA species are not detected in the PR protein-negative breast cancer cell lines MDA-MB-231 and LY2. T47D cells contain high levels of PR mRNA and protein (detected by hormone binding assay or Western blot analysis), and the PR protein and mRNA content of T47D cells are reduced to about 10% of the control level within 48 h of treatment with 10 nM promegestone; 17, 21-dimethyl-19-nor-pregna-4,9-diene-3, 20-dione (R5020) or 16 alpha-ethyl-21-hydroxy-19-nor-pregn-4-ene-3,20-dione (ORG2058), both potent progestins. In contrast, treatment of T47D cells with the antiprogestin 17 beta-hydroxy-11 beta-[4-dimethylaminophenyl]-17 alpha-(1-propynyl)-estra- 4, 9-dien-3-one) (RU38486) reduces PR protein and mRNA levels only transiently. PR protein and mRNA are virtually undetectable in control MCF-7 cells grown in the absence of estrogens. When estradiol is administered to MCF-7 cells, the PR mRNA and protein levels increase gradually and proportionately (10- or 40-fold, respectively, in 3 days).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Vasopressin-activated calcium-mobilizing (VACM-1) protein is a cul-5 gene product that forms complexes with a subclass of ubiquitin E3 ligases involved in proteasomal protein degradation. The expression of VACM-1 cDNA in the T47D breast cancer cell line inhibits growth and decreases phosphorylation of mitogen activated protein kinase. Factors that regulate expression or stability of VACM-1 protein have not been identified, however. In our search to identify drugs/substances that may control VACM-1 protein expression, we examined the effects of resveratrol (trans-3,5,4′-trihydroxystilbene), a natural component in the human diet which inhibits tumor initiation and promotion. CMV vector and VACM-1 cDNA stably transfected T47D breast cancer-derived cells were treated with resveratrol and cell growth and VACM-1 protein concentrations were measured. Since the cellular mechanism of resveratrol-dependent inhibition of cell growth also involves the regulation of estrogen receptors, the effect of 17-β−estradiol and resveratrol on ERα levels and on cell growth was examined in control and in VACM-1 cDNA transfected cells. Our results demonstrate that antiproliferative effect of resveratrol observed in the control T47D cancer cells was significantly enhanced in VACM-1 cDNA transfected T47D cells. Western blot results indicated that resveratrol increased VACM-1 protein concentration. Finally, treatment with resveratrol for 24 and 48 h attenuated 17-β−estradiol induced increase in cell growth both in control and in VACM-1 cDNA transfected cells. The effect was significantly higher in the VACM-1 cDNA transfected cells when compared to controls. These results indicate that the antiproliferative effect of resveratrol may involve induction of VACM-1/cul5.  相似文献   

10.
11.
探讨山慈菇酯提物(ethyl acetate extract of Cremaara appendiculata,Cr Ap)作用于4T1乳腺癌癌组织中差异蛋白的表达变化,筛选Cr Ap抗4T1乳腺癌的靶点.采用定量蛋白质组学串联质量标签(TMT)标记技术对Cr Ap作用的4T1乳腺癌癌组织进行检测,并筛选4T1组织中...  相似文献   

12.
ADAR1 is a double-stranded RNA (dsRNA) editing enzyme that specifically converts adenosine to inosine. ADAR1 is ubiquitously expressed in eukaryotes and participate in various cellular processes such as differentiation, proliferation and immune responses. We report here a new proteomics study of HEK293T cells with and without ADAR1 overexpression. The up- and down-regulated proteins by ADAR1 overexpression are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by label-free protein quantification. Totally 1,495 proteins (FDR < 0.01) are identified, among which 211 are up- and 159 are down-regulated for at least 1.5-fold (n = 3, p < 0.05). Gene ontology analysis reveals that these ADAR1-regulated proteins are involved in protein translation and cell cycle regulation. Bioinformatics analysis identifies a closely related network consistent for the protein translation machinery and a tightly connected network through proliferating cell nuclear antigen (PCNA)-interactions. Up-regulation of the proteins in the PCNA-mediated cell proliferation network is confirmed by Western blotting. In addition, ADAR1 overexpression is confirmed to increase cell proliferation in HEK293T cells and A549 cells. We conclude that ADAR1 overexpression modulates the protein translation and cell cycle networks through PCNA-mediated protein-protein interaction to promote cell proliferation in HEK293 cells.  相似文献   

13.
14.
15.
16.
This study examined the enzymatic characteristics and steroid regulation of the glucocorticoid-metabolizing enzyme 11β-hydroxysteroid dehydrogenase (11β-HSD) in the human breast cancer cell line T-47D. In cell homogenates, exogenous NAD significantly increased the conversion of corticosterone to 11-dehydrocorticosterone, while NADP was ineffective. There was no conversion of 11-dehydrocorticosterone to corticosterone either with NADH or NADPH demonstrating the lack of reductase activity. In keeping with these results, RT-PCR analysis indicated a mRNA for 11β-HSD2 in T-47D cells, while 11β-HSD1 mRNA levels were undetectable. In T-47D cells treated for 24 h with medroxyprogesterone acetate (MPA), 11β-HSD catalytic activity was elevated 11-fold, while estrone (E1), estradiol (E2) and the synthetic glucocorticoid dexamethasone (DEX) were ineffective. The antiprogestin mifepristone (RU486) acted as a pure antagonist of the progestin-enhanced 11β-HSD activity, but did not exert any agonistic effects of its own. In addition, RT-PCR analysis demonstrated that MPA was a potent inducer of 11β-HSD2 gene expression, increasing the steady-state levels of 11β-HSD2 mRNA. Taken together, these results demonstrate that 11β-HSD2 is the 11β-HSD isoform expressed by T-47D cells under steady-state conditions and suggest the existence of a previously undocumented mechanism of action of progestins in breast cancer cells.  相似文献   

17.
Tamoxifen is a first‐line drug for hormone therapy (HT) in oestrogen receptor‐positive breast cancer patients. However, 20% to 30% of those patients are resistant to tamoxifen treatment. Cancer stem cells (CSCs) have been implicated as one of the mechanisms responsible for tamoxifen resistance. Our previous study indicated that decreased expression of the CRB3 gene confers stem cell characteristics to breast cancer cells. In the current investigation, we found that most of the breast cancer patient tissues resistant to tamoxifen were negative for CRB3 protein and positive for β‐catenin protein, in contrast to their matched primary tumours by immunohistochemical analysis. Furthermore, expression of CRB3 mRNA and protein was low, while expression of β‐catenin mRNA and protein was high in tamoxifen resistance cells (LCC2 and T47D TamR) contrast to their corresponding cell lines MCF7 and T47D. Similarly, CRB3 overexpression markedly restored the tamoxifen sensitivity of TamR cells by the MTT viability assay. Finally, we found that CRB3 suppressed the stemness of TamR cells by inhibiting β‐catenin signalling, which may in turn lead to a decrease in the breast cancer cell population. Furthermore, these findings indicate that CRB3 is an important regulator for breast cancer stemness, which is associated with tamoxifen resistance.  相似文献   

18.
We report that transfection of insulin-like growth factor-binding protein-3 (IGFBP-3) cDNA in human breast cancer cell lines expressing either mutant p53 (T47D) or wild-type p53 (MCF-7) induces apoptosis. IGFBP-3 also increases the ratio of pro-apoptotic to anti-apoptotic members of the Bcl-2 family. In MCF-7, an increase in Bad and Bax protein expression and a decrease in Bcl-x(L) protein and Bcl-2 protein and mRNA were observed. In T47D, Bax and Bad proteins were up-regulated; Bcl-2 protein is undetectable in these cells. As T47D expresses mutant p53 protein, these modulations of pro-apoptotic proteins and induction of apoptosis are independent of p53. The effect of IGFBP-3 on the response of T47D to ionizing radiation (IR) was examined. These cells do not G(1) arrest in response to IR and are relatively radioresistant. Transfection of IGFBP-3 increased the radiosensitivity of T47D and increased IR-induced apoptosis but did not effect a rapid G(1) arrest. IR also caused a much greater increase in Bax protein in IGFBP-3 transfectants compared with vector controls. Thus, IGFBP-3 increases the expression of pro-apoptotic proteins and apoptosis both basally and in response to IR, suggesting it may be a p53-independent effector of apoptosis in breast cancer cells via its modulation of the Bax:Bcl-2 protein ratio.  相似文献   

19.
20.
Insulin-like growth factor-I (IGF-I) receptors are present in breast cancer cells and may play a role in breast cancer cell growth. We have studied the effect of progestins on IGF-I receptors in T47D human breast cancer cells. T47D cells constitutively express high levels of progesterone receptors and are a model for studying the regulation of cellular functions by progestins. Treatment of T47D cells with either progesterone or the synthetic progestin promegestone (R5020) decreased IGF-I receptor content by approximately 50%, as measured by Scatchard analysis and receptor biosynthesis studies. In contrast to progestins, estradiol, dexamethasone, and dihydrotestosterone did not influence IGF-I receptor content. No effect of R5020 was seen after 12 h of incubation, a near-maximal effect was seen after 24 h, and greatest effects were seen after 72 h. R5020 decreased IGF-I receptor mRNA abundance, indicating that progestins acted at the level of gene expression. However, progestins also increased the secretion of IGF-II, a ligand for the IGF-I receptor. In contrast to IGF-II, T47D cells did not express IGF-I. The addition of exogenous IGF-II to T47D cells down-regulated both IGF-I receptor binding and IGF-I receptor mRNA abundance. This study indicates, therefore, that progestins regulate IGF-I receptors in breast cancer cells and suggests that this regulation occurs via an autocrine pathway involving enhanced IGF-II secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号