首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional hydrogen ion glas electrodes have been used for the preparation of enzyme-pH-electrodes by either entrapping the enzymes within polyacrylamide gels around the electrode or as liquid layer trapped within a cellophane membrane. The enzymes were glucose oxidase, urase and penicillinase.The pH response to glucose concentration was about linear within 10?1–10?3 M glucose and for urea linear within 5·10t—–5·10?5M. The pH response to penicillin was about linear in the range from 10?3–10?2 M resulting in a pH shift of 1.4 units; reproduceable pH response was obtained down to concentrations of 3·10?5 M.Studies as to the effect of buffer using an urease–pH-electrode showed a buffer concentration of 10?2 M a substantial shift of about one pH-unit in the range of 10?4 to 10?2 M urea. Both urease- and penicillinase–pH-electrodes were tested as to stability showing no decrease in pH response except at high substrate concentration (1·10?2 M) over a period of 2–3 weeks kept at room temperature.  相似文献   

2.
A new biosensor based on catalase enzyme immobilized on electrochemically constructed polyaniline (PANI) film modified with glutaraldehyde has been developed for the determination of hydrogen peroxide (H2O2) in milk samples. Assembly processes of polyaniline and immobilization of the enzyme were monitored with the help of electrochemical impedance spectroscopy. Amperometric measurements have been performed at cathodic peak (?0.3?V vs. Ag/AgCI) which was attributed to reduction of PANI. Hydrogen peroxide was determined by using amperometric method at ?0.3?V. The biosensor responses were correlated linearly with the hydrogen peroxide concentrations between 5.0?×?10?6 and 1.0?×?10?4?M by amperometric method. Detection limit of the biosensor is 2.18?×?10?6?M for H2O2. In the optimization studies of the biosensor, some parameters such as optimum pH, temperature, concentration of aniline, amount of enzyme, and number of scans during electropolymerization were investigated.  相似文献   

3.
Ming L  Xi X  Liu J 《Biotechnology letters》2006,28(17):1341-1345
A platinized carbon paste prepared via electrodeposition had a preferential electrocatalytic action toward H2O2. Therefore, we have developed a new amperometric glucose biosensor based on the immobilization of glucose oxidase on to the electrochemically platinized carbon paste. The proposed biosensor is free of potential interferences due to its cathodic detection of glucose at the potential of 0.0 V (vs. Ag/AgCl). It also shows acceptable analytical performance in terms of linearity (6 × 10−5 to 1.2 × 10−2 M, r = 0.998), detection limit (2 × 10−5 M), response time (20–30 s), reproducibility (RSD = 4.4%), and storage life (t 0.80 = 45 days). All these advantages of the biosensor raise potential possibilities for its medical or other biotechnical applications.  相似文献   

4.
This study describes a novel biosensor method for specific determination of nitrate in food and water samples by using nitrate reductase (NR) (EC 1.9.6.1) biosensor based on the detection of oxidation peak current of redox mediator, methyl viologen, related to nitrate concentration. The method was shown to be selective and sensitive to determine the nitrate levels of water samples and processed meat samples. Immobilization procedure and also working conditions of the biosensor were optimized. Dynamic range attained with this method was established as (5.0–90.0 × 10?9 M) for nitrate concentration with a 10 s response time. Limit of detection (LOD) and quantification (LOQ) of the biosensor were calculated as 2.2 × 10?9 M and 5.79 × 10?9 M, respectively. Reproducibility experiments was established on repetitive measurements by using a freshly prepared biosensor for avoiding the memory effect. The RSD was calculated as 1.22% at a nitrate concentration of 4.7 × 10?8 M (n = 7).  相似文献   

5.
《Biosensors》1986,2(2):71-87
Glucose dehydrogenase (GDH), one of the recently discovered NAD(P)+-independent ‘quinoprotein’ class of oxidoreductase enzymes, was purified from Acinetobacter calcoaceticus LMD 79.41 and immobilised on a 1,1'-dimethylferrocene-modified graphite foil electrode.The second-order rate constant (ks) for the transfer of electrons between GDH and ferrocenemonocarboxylic acid (FMCA) in a homogeneous system, determined using direct current (DC) cyclic voltammetry, was found to be 9.4 × 106 litres mol−1 s−1. This value of ks for GDH was more than 40 times greater than that for the flavoprotein glucose oxidase (GOD) under identical conditions. Such high catalytic activities were also observed when GDH was immobilised in the presence of an insoluble ferrocene derivative; a biosensor based on GDH was found to produce more than twice the current density of similar GOD-based electrodes. The steady-state current produced by the GDH-based electrode was limited by the enzymic reaction since methods which increased the enzyme loadings elevated the upper limit of glucose detection from 5 mM to 15 mM.The temperature, pH, stability and response characteristics of the GDH-based glucose sensor illustrate its potential usefulness for a variety of practical applications. In particular, the high catalytic activity and oxygen insensitivity of this biosensor make it suitable for in vivo blood glucose monitoring in the management of diabetes.  相似文献   

6.
β-Galactosidase and glucose oxidase were immobilized with bovine serum albumin using glutaraldehyde on to a glassy carbon electrode silanized with 3-aminopropyltriethoxysilane. The laboratory-constructed lactose electrode was used for flow injection analysis to determine the lactose content in milk. Electrochemical interference could be detected by a non-enzymatic electrode (W2) and the current was subtracted from that of the enzymatic electrode (W1), providing an accurate measurement of the hydrogen peroxide that was enzymatically generated. The peak current was linearly related to the lactose concentration in the range 10?4~ 1.5 × 10?3 M (original concentration) and 40 samples/hr could be analyzed. The relative standard deviation for 10 assays was less than 2%. The proposed method was compared with the chloramine T method and the values determined by both methods were in good agreement.  相似文献   

7.
Herein, a novel third-generation glucose biosensor based on unique hollow nanostructured Pt decorated multiwall carbon nanotubes (HPt-CNTs) composites was successfully constructed. The HPt-CNTs composites were successfully prepared and cast on the glassy carbon electrode (GCE) surface directly. With the help of electrostatic adsorption and covalent attachment, the negative l-cysteine (l-cys) and the positive poly(diallydimethylammonium) chloride (PDDA) protected gold nanoparticles (PDDA-Au) were modified on the resulting electrode surface subsequently, which provided further immobilization of glucose oxidase (GOD). Exploitation of the unique properties of HPt-CNTs composites led to the achievement of direct electron transfer between the electrode and the redox active centers of GOD, and the electrode exhibited a pair of well-defined reversible redox peaks with a fast heterogeneous electron transfer rate. In particular, the detection limit (4 × 10−7 M) of this biosensor was significantly lower and the linear range (1.2 μM–8.4 mM) was much wider than similar carbon nanotubes (CNTs) and Pt-based glucose biosensors. The resulted biosensor also showed high sensitivity and freedom of interference from other co-existing electroactive species, indicating that our facile procedure of immobilizing GOD exhibited better response and had potential application for glucose analysis.  相似文献   

8.
The short term uptake of phosphate involving 10 min absorption followed by 5 min desorption, both at 30 °C, in the concentration range 1.0×10?9 to 7.5×10?2 M KH2PO4 by fresh and washed maize (Zea mays L. cv. Ganga Safed-2) roots can be described by a single isotherm having five phases (0 and I–IV) with regularly spaced kinetic constants. Almost identical kinetics were observed in both fresh and washed maize roots. The kinetics of phase 0 in the concentration range 1.0×10?9–3.0×10?5 M. was sigmoidal in fresh maize roots, however, in washed tissue exhibited 2 phases termed here as 0a and 0b. 0a covered the concentration range 1.0×10?9–5.0×10?6 M and 0b 6.0×10?6–3.0×10?5 M. In the concentration range 1.0×10?4–7.5×10?2 M four distinct phases, termed as I, II, III and IV were evident in both fresh and washed maize roots. Each phase obeyed Michaelis—Menten kinetics. The values of Km and Vmax have been estimated for each phase. The uptake isotherm was accompanied by discontinuous transitions.  相似文献   

9.
A hydrogen peroxide permselective membrane with asymmetric structure was prepared and d-glucose oxidase (EC 1.1.3.4) was immobilized onto the porous layer. The activity of the immobilized d-glucose oxidase membrane was 0.34 units cm?2 and the activity yield was 6.8% of that of the native enzyme. Optimum pH, optimum temperature, pH stability and temperature stability were found to be pH 5.0, 30–40°C, pH 4.0–7.0 and below 55°C, respectively. The apparent Michaelis constant of the immobilized d-glucose oxidase membrane was 1.6 × 10?3 mol l?1 and that of free enzyme was 4.8 × 10?2 mol l?1. An enzyme electrode was constructed by combination of a hydrogen peroxide electrode with the immobilized d-glucose oxidase membrane. The enzyme electrode responded linearly to d-glucose over the concentration 0–1000 mg dl?1 within 10 s. When the enzyme electrode was applied to the determination of d-glucose in human serum, within day precision (CV) was 1.29% for d-glucose concentration with a mean value of 106.8 mg dl?1. The correlation coefficient between the enzyme electrode method and the conventional colorimetric method using a free enzyme was 0.984. The immobilized d-glucose oxidase membrane was sufficiently stable to perform 1000 assays (2 to 4 weeks operation) for the determination of d-glucose in human whole blood. The dried membrane retained 77% of its initial activity after storage at 4°C for 16 months.  相似文献   

10.
Ultra‐weak chemiluminescence (CL) from the reaction of iodide and KMnO4 was strongly enhanced by carbon nanodots (CNDs) in an acidic medium. The CL intensity was directly proportional to the concentration of iodide in the solution. Therefore, a flow‐injection CL system with high sensitivity, selectivity and reproducibility is proposed for the determination of iodide. The proposed method exhibited advantages over a linear range of 3.0 × 10?6–1.0 × 10?4 mol/L and had a detection limit of 3.5 × 10?7 mol/L. The method was successfully applied to the evaluation of iodide in food samples with recoveries of between 96 and 103%. The relative standard deviations were 2.1 and 4.1% for intra‐ and inter‐assay precision, respectively.  相似文献   

11.
Summary A yeast potentiometric biosensor for glucose determination is described. After induction of glycolytic enzyme synthesis a cell suspension of the yeast Hansenula anomala is retained in calcium alginate gel on the surface of a glass electrode. This biosensor gives a Nernstian response in glucose concentration of 5·10–4–5·10–3 mol/l with a response time of 5 min and a life-time of at least 2 months. Mannose and fructose are the only significantly interfering substances. The biosensor was used for measurement of glucose concentration in urine with results comparable to those obtained by a photometric enzymatic method.  相似文献   

12.
The aim of this work was to develop a biosensor for toxic amides using whole cells of Pseudomonas. aeruginosa containing amidase activity, which catalyses the hydrolysis of amides such as acrylamide producing ammonia and the corresponding organic acid. Whole cells immobilized in several types of membrane in the presence of glutaraldehyde and an ammonium ion-selective electrode, were used for biosensor development. This biosensor exhibited a linear response in the range of 0.1–4.0×10?3 M of acrylamide, a detection limit of 4.48×10?5 M acrylamide, a response time of 55 s, a sensitivity of 58.99 mV mM?1 of acrylamide and a maximum t1/2 of 54 days. The selectivity of this biosensor towards other amides was investigated, which revealed that it cross-reacted with acetamide and formamide, but no activity was detected with phenylacetamide, p-nitrophenylacetamide and acetanilide. It was successfully used for quantification of acrylamide in real industrial effluents and recovery experiments were carried out which revealed an average substrate recovery of 93.3%. The biosensor is cheap since whole cells of P. aeruginosa can be used as source of amidase activity.  相似文献   

13.
The addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M) to isolated hepatocytes stimulated glycogen accumulation and this stimulation was more pronounced when the medium glucose was raised from 50 to 300 mg percent. Studies with [14C]-glucose showed a two-fold stimulation in glycogen synthesis by the addition of insulin (4.0 × 10?11 M) or acetylcholine (10?6 M). A sixteen percent increase in the activity of glycogen synthase was observed in cells incubated for 10 minutes with insulin (4.0 × 10?11 M) or acetylcholine (10?6 M), whereas at one hour incubation a 40 percent increase in activity was observed with the same concentration of insulin or acetylcholine. The effects of insulin and acetylcholine were not additive.  相似文献   

14.
The binding characteristics of flavin adenine dinucleotide (FAD) to apoenzyme preparations obtained from native and intramolecularly crosslinked glucose oxidase were determined and compared. The dissociation constants Kdiss as well as rates of recombination of FAD with the two apoenzyme preparations, were independently evaluated from fluorescence quenching of either the tryptophans of FAD. The Kdiss values thus obtained were <10?19M for native glucose oxidase and 4 ± 1 × 10?7M for the crosslinked enzyme. The recombination of apo glucose oxidase with FAD, which is presumably diffusion controlled, is followed by an apparent first order decrease in fluorescence intensity of both the protein tryptophans and FAD, with a rate constant around 0.2 min?1. This could be related to conformational changes which occur immediately after binding of FAD to the apoenzyme, an interpretation which is supported by the markedly different results obtained in the analogous experiments with the crosslinked enzyme. A model for the conformational characteristics of glucose oxidase, based on this study, is proposed.  相似文献   

15.
An advanced electrochemical sensor for the detection of enrofloxacin (ENR) based on the use of a modified electrode containing cadmium sulfide (CdS) nanoparticles (NPs) is reported. The CdS NPs were synthesized and characterized and then coated onto the electrode to fabricate a modified electrode that exhibited a lower limit of detection of 9.5 × 10?8 mol·L?1. This detection limit compares with a traditional electrode that exhibited a concentration detection range of 1.0 × 10?2 to 1.0 × 10?7 mol·L?1. This modified electrode demonstrated good selectivity, reproducibility, response time (<40 s), lifetime (up to 12 wk), and pH range (3.3‐7.2) for the determination of ENR in real samples (eg, pig urine).  相似文献   

16.
In this study, a novel glucose biosensor was fabricated by reconstitutional immobilization of glucose oxidase (GOx) onto a poly(glycidyl methacrylate-co-vinylferrocene) (poly(GMA-co-VFc)) film coated pencil graphite electrode (PGE). The amperometric current response of poly(GMA-co-VFc)-GOx to glucose is linear in the concentration range between 1 and 16 mM (correlation coefficient of 0.9998) with a detection limit of 2.7 μM (S/N = 3). Experimental parameters were studied in detail and optimized, including the pH and temperature governing the analytical performance of the biosensor. The stability and reusability of the biosensor as well as its kinetic parameters have also been studied.  相似文献   

17.
Effect of extracellular Ca2+ on the morphogenesis of the cellular slime mold Dictyostelium discoideum was examined on agar plate. The concentration of Ca2+ in agar plate was controlled by keeping the concentration of a chelating reagent EGTA constant and varying the concentration of total calcium. From experiments in which EGTA concentration was kept at 2.0 × 10?3 M, it was found that by decreasing Ca2+ concentration the morphogenesis was modified so that development of the aggregating amebae into fruiting bodies was accelerated and the period of migrating slugs was shortened. Below 1.0 × 10?3 M of Ca2+ concentration, the total number of aggregates initially increased with decreasing Ca2+ concentration, reached a maximum at about 3.0 × 10?7 M of Ca2+ concentration and hereafter decreased with decreasing Ca2+ concentration. The number of mature fruiting bodies obtained at 36 h period after starvation depends on Ca2+ concentration and the total number of aggregates. The cell aggregation initiated at the same time period after starvation even at an extreme case of 1.0 × 10?8 M of Ca2+ concentration as under enough Ca2+ supply, while the formation of mature fruiting body was seriously inhibited. These observation suggested that the cAMP-mediated cell aggregation in D. discoideum is a Ca2+-independent phenomena, although extracellular Ca2+ is necessary for the normal development of the aggregated amebae.  相似文献   

18.
《Luminescence》2004,19(1):21-25
The electrogenerated chemiluminescence (ECL) reaction of lucigenin with isatin was investigated at a platinum electrode in a neutral aqueous solution. The ECL intensity of lucigenin at ?0.65 V was greatly enhanced by isatin, and the ECL intensity was about 50 times higher than that of lucigenin without isatin. The enhanced ECL was believed to be produced by the chemiluminescence reaction between reduced lucigenin and superoxide anion that was generated by the reaction of electrochemically reduced isatin with dissolved oxygen. The conditions for the determination of isatin were optimized. Under the optimized condition, the enhanced ECL intensity vs. isatin concentration was linear in the range 4.8 × 10?7?1.9 × 10?5 g/mL; with a detection limit of 3.3 × 10?8 g/mL, and the relative standard derivation 1.0 × 10?6 g/mL isatin was 3.8%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
M J Müller  H J Seitz 《Life sciences》1981,28(20):2243-2249
The effect of increasing concentration of T3 (10 × 10?12 – 2000 × 10?6 M) on O2-consumption and [14C]-alanine conversion into [14C]-CO2 and [14C]-glucose was investigated in the isolated perfused liver of hypothyroid starved rats. T3 induced within 1 h an increase (i) in the oligomycine-sensitive O2-consumption (+ 50–85 %), (ii) in the [14C]-CO2-production (+55–102 %), and (iii) in the [14C]-glucose synthesis (+ 40?80 %). These effects were dose dependent and significant at a concentration as low as 10 × 10?12 M, reported to represent the free hormone concentration in rat serum under in vivo conditions. The results demonstrate a direct and rapid stimulatory action of T3 in the physiological range on hepatic energy metabolism and glucose production. The effects could not be explained by the thyroid hormone induced nuclear activity.  相似文献   

20.
Hydroxides of magnesium and zinc, aluminum oxide, zinc phosphate, and co-precipitated Ca3(PO4)2 and Mg(OH)2 were efficient in binding extracellular glucose oxidase (GO) of P. adametzii LF F-2044.1 in a culture liquid filtrate (CLF). Basic Al2O3 was the most appropriate adsorbent for GO isolation from the CLF of the fungus. A GO isolation method was developed, which allowed for obtaining an enzyme with a high degree of purification. Spectral properties of the enzyme, its catalytic activity, and stability were characterized. The GO of P. adametzii LF F-2044.1 exhibited high pH stability, retaining activity within the range 4.5–9.0. The rate that GO-catalyzed D-glucose oxidation increased as the temperature increased (up to approximately 60°C). The catalytic activity and thermal stability of GO depended on its concentration in the medium. Under optimum conditions, the fractions GO-1 and GO-2 were characterized by K M values of 1.56 × 10?2 and 2.19 × 10?2 M, respectively; the corresponding values of k cat equaled 235.1 and 318.2 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号