首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A group of microtubule-associated proteins called +TIPs (plus end tracking proteins), including EB1 family proteins, label growing microtubule ends specifically in diverse organisms and are implicated in spindle dynamics, chromosome segregation, and directing microtubules toward cortical sites. Here, we report three new EB1-like proteins from Arabidopsis and provide the intracellular localization for AtEB1, which differs from all known EB1 proteins in having a very long acidic C-terminal tail. In marked contrast to other EB1 proteins, the GFP-AtEB1 fusion protein localizes not only to microtubule plus ends but also to motile, pleiomorphic tubulovesicular membrane networks that surround other organelles and frequently merge with the endoplasmic reticulum. AtEB1 behavior thus resembles that of +TIPs, such as the cytoplasmic linker protein CLIP-170, that are known to associate with and pull along membrane tubules in animal systems but for which homologs have not been identified in plants. In addition, though EB1 proteins are believed to stabilize microtubules, a different behavior is observed for AtEB1 where instead of stabilizing a microtubule it localizes to already stabilized regions on a microtubule. The dual localization pattern of AtEB1 suggests links between microtubule plus end dynamics and endomembrane organization during polarized growth of plant cells.  相似文献   

2.
The principles by which cortical microtubules self-organize into a global template hold important implications for cell wall patterning. Microtubules move along bundles of microtubules, and neighboring bundles tend to form mobile domains that flow in a common direction. The bundles themselves move slowly and for longer than the individual microtubules, with domains describing slow rotary patterns. Despite this tendency for colinearity, microtubules have been seen to branch off extant microtubules at ∼45°. To examine this paradoxical behavior, we investigated whether some microtubules may be born on and grow along extant microtubule(s). The plus-end markers Arabidopsis thaliana end binding protein 1a, AtEB1a-GFP, and Arabidopsis SPIRAL1, SPR1-GFP, allowed microtubules of known polarity to be distinguished from underlying microtubules. This showed that the majority of microtubules do branch but in a direction heavily biased toward the plus end of the mother microtubule: few grow backward, consistent with the common polarity of domains. However, we also found that a significant proportion of emergent comets do follow the axes of extant microtubules, both at sites of apparent microtubule nucleation and at cross-over points. These phenomena help explain the persistence of bundles and counterbalance the tendency to branch.  相似文献   

3.
Chan J  Calder G  Fox S  Lloyd C 《The Plant cell》2005,17(6):1737-1748
In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a-green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to study the transitions of microtubule arrays throughout the division cycle of cells lacking a defined centrosome. During division, the dispersed origin of microtubules was replaced by a more focused pattern with the plus end comets growing away from sites associated with the nuclear periphery. The mitotic spindle then evolved in two quite distinct ways depending on the presence or absence of the preprophase band (PPB): the cells displaying outside-in as well as inside-out mitotic pathways. In those cells possessing a PPB, the fusion protein labeled material at the nuclear periphery that segregated into two polar caps, perpendicular to the PPB, before nuclear envelope breakdown (NEBD). These polar caps then marked the spindle poles upon NEBD. However, in the population of cells without PPBs, there was no prepolarization of material at the nuclear envelope before NEBD, and the bipolar spindle only emerged clearly after NEBD. Such cells had variable spindle orientations and enhanced phragmoplast mobility, suggesting that the PPB is involved in a polarization event that promotes early spindle pole morphogenesis and subsequent positional stability during division. Astral-like microtubules are not usually prominent in plant cells, but they are clearly seen in these Arabidopsis cells, and we hypothesize that they may be involved in orienting the division plane, particularly where the plane is not determined before division.  相似文献   

4.
A novel kinesin, GhKCH1, has been identified from cotton (Gossypium hirsutum) fibers. GhKCH1 has a centrally located kinesin catalytic core, a signature neck peptide of minus end-directed kinesins, and a unique calponin homology (CH) domain at its N terminus. GhKCH1 and other CH domain-containing kinesins (KCHs) belong to a distinct branch of the minus end-directed kinesin subfamily. To date the KCH kinesins have been found only in higher plants. Because the CH domain is often found in actin-binding proteins, we proposed that GhKCH1 might play a role in mediating dynamic interaction between microtubules and actin microfilaments in cotton fibers. In an in vitro actin-binding assay, GhKCH1's N-terminal region including the CH domain interacted directly with actin microfilaments. In cotton fibers, GhKCH1 decorated cortical microtubules in a punctate manner. Occasionally GhKCH1 was found to be associated with transverse-cortical actin microfilaments, but never with axial actin cables in cotton fibers. Localization of GhKCH1 on cortical microtubules was independent of the integrity of actin microfilaments. Thus, GhKCH1 may play a role in organizing the actin network in coordination with the cortical microtubule array. These data also suggest that flowering plants may employ unique KCHs to coordinate actin microfilaments and microtubules during cell growth.  相似文献   

5.
Preuss ML  Delmer DP  Liu B 《Plant physiology》2003,132(1):154-160
Microtubules in interphase plant cells form a cortical array, which is critical for plant cell morphogenesis. Genetic studies imply that the minus end-directed microtubule motor kinesin-like calmodulin-binding protein (KCBP) plays a role in trichome morphogenesis in Arabidopsis. However, it was not clear whether this motor interacted with interphase microtubules. In cotton (Gossypium hirsutum) fibers, cortical microtubules undergo dramatic reorganization during fiber development. In this study, cDNA clones of the cotton KCBP homolog GhKCBP were isolated from a cotton fiber-specific cDNA library. During cotton fiber development from 10 to 21 DPA, the GhKCBP protein level gradually decreases. By immunofluorescence, GhKCBP was detected as puncta along cortical microtubules in fiber cells of different developmental stages. Thus our results provide evidence that GhKCBP plays a role in interphase cell growth likely by interacting with cortical microtubules. In contrast to fibers, in dividing cells of cotton, GhKCBP localized to the nucleus, the microtubule preprophase band, mitotic spindle, and the phragmoplast. Therefore KCBP likely exerts multiple roles in cell division and cell growth in flowering plants.  相似文献   

6.
Plant-cell expansion is controlled by cellulose microfibrils in the wall with microtubules providing tracks for cellulose synthesizing enzymes. Microtubules can be reoriented experimentally and are hypothesized to reorient cyclically in aerial organs, but the mechanism is unclear. Here, Arabidopsis hypocotyl microtubules were labelled with AtEB1a-GFP (Arabidopsis microtubule end-binding protein 1a) or GFP-TUA6 (Arabidopsis alpha-tubulin 6) to record long cycles of reorientation. This revealed microtubules undergoing previously unseen clockwise or counter-clockwise rotations. Existing models emphasize selective shrinkage and regrowth or the outcome of individual microtubule encounters to explain realignment. Our higher-order view emphasizes microtubule group behaviour over time. Successive microtubules move in the same direction along self-sustaining tracks. Significantly, the tracks themselves migrate, always in the direction of the individual fast-growing ends, but twentyfold slower. Spontaneous sorting of tracks into groups with common polarities generates a mosaic of domains. Domains slowly migrate around the cell in skewed paths, generating rotations whose progressive nature is interrupted when one domain is displaced by collision with another. Rotary movements could explain how the angle of cellulose microfibrils can change from layer to layer in the polylamellate cell wall.  相似文献   

7.
Mutants of the yeast Kar3 protein are defective in nuclear fusion, or karyogamy, during mating and show slow mitotic growth, indicating a requirement for the protein both during mating and in mitosis. DNA sequence analysis predicts that Kar3 is a microtubule motor protein related to kinesin, but with the motor domain at the C-terminus of the protein rather than the N-terminus as in kinesin heavy chain. We have expressed Kar3 as a fusion protein with glutathione S-transferase (GST) and determined the in vitro motility properties of the bacterially expressed protein. The GST-Kar3 fusion protein bound to a coverslip translocates microtubules in gliding assays with a velocity of 1-2 microns/min and moves towards microtubule minus ends, unlike kinesin but like kinesin-related Drosophila ncd. Taxol-stabilized microtubules bound to GST-Kar3 on a coverslip shorten as they glide, resulting in faster lagging end, than leading end, velocities. Comparison of lagging and leading end velocities with velocities of asymmetrical axoneme-microtubule complexes indicates that microtubules shorten preferentially from the lagging or minus ends. The minus end-directed translocation and microtubule bundling of GST-Kar3 is consistent with models in which the Kar3 protein crosslinks internuclear microtubules and mediates nuclear fusion by moving towards microtubule minus ends, pulling the two nuclei together. In mitotic cells, the minus end motility of Kar3 could move chromosomes polewards, either by attaching to kinetochores and moving them polewards along microtubules, or by attaching to kinetochore microtubules and pulling them polewards along other polar microtubules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Plant cells produce different microtubule arrays that are essential for cell division and morphogenesis without equivalent in other eukaryotes. Microtubule-associated proteins influence the behavior of microtubules that is presumed to culminate into transitions from one array to another. We analyzed the microtubule-binding properties of three Arabidopsis (Arabidopsis thaliana) members, AtMAP65-1, AtMAP65-4, and AtMAP65-5, in live cells using laser scanning confocal microscopy. Depending on the overall organization of the cortical array, AtMAP65-1-GFP (green fluorescent protein) and AtMAP65-5-GFP associated with a subset of microtubules. In cells containing both coaligned and oblique microtubules, AtMAP65-1-GFP and AtMAP65-5-GFP tended to be associated with the coaligned microtubules. Cortical microtubules labeled with AtMAP65-1-GFP and AtMAP65-5-GFP appeared as thick bundles and showed more resistance to microtubule-destabilizing drugs. The polymerization rates of AtMAP65-1-GFP and AtMAP65-5-GFP microtubules were similar to those of tubulin-GFP marked microtubules but were different from AtEB1a-GFP, a microtubule plus-end-binding EB1-like protein that stimulated polymerization. By contrast, depolymerization rates of AtMAP65-1-GFP- and AtMAP65-5-GFP-labeled microtubules were reduced. AtMAP65-1-GFP associated with polymerizing microtubules within a bundle, and with fixed microtubule termini, suggesting that AtMAP65-1's function is to bundle and stabilize adjacent microtubules of the cortex. Polymerization within a bundle took place in either direction so that bundling occurred between parallel or antiparallel aligned microtubules. AtMAP65-4-GFP did not label cortical microtubules or the preprophase band, despite continuous expression driven by the 35S promoter, and its subcellular localization was restricted to microtubules that rearranged to form a spindle and the polar sides of the spindle proper. The expression of AtMAP65-4 peaked at mitosis, in agreement with a function related to spindle formation, whereas AtMAP65-1 and AtMAP65-5 were expressed throughout the cell cycle.  相似文献   

9.
The extracellular matrix is constructed beyond the plasma membrane, challenging mechanisms for its control by the cell. In plants, the cell wall is highly ordered, with cellulose microfibrils aligned coherently over a scale spanning hundreds of cells. To a considerable extent, deploying aligned microfibrils determines mechanical properties of the cell wall, including strength and compliance. Cellulose microfibrils have long been seen to be aligned in parallel with an array of microtubules in the cell cortex. How do these cortical microtubules affect the cellulose synthase complex? This question has stood for as many years as the parallelism between the elements has been observed, but now an answer is emerging. Here, we review recent work establishing that the link between microtubules and microfibrils is mediated by a protein named cellulose synthase-interacting protein 1 (CSI1). The protein binds both microtubules and components of the cellulose synthase complex. In the absence of CSI1, microfibrils are synthesized but their alignment becomes uncoupled from the microtubules, an effect that is phenocopied in the wild type by depolymerizing the microtubules. The characterization of CSI1 significantly enhances knowledge of how cellulose is aligned, a process that serves as a paradigmatic example of how cells dictate the construction of their extracellular environment.  相似文献   

10.
The anchoring of microtubules to subcellular structures is critical for cell polarity and motility. Although the process of anchoring cytoplasmic microtubules to the centrosome has been studied in some detail, it is not known how spindle microtubules are anchored to the mitotic centrosome and, particularly, whether anchoring and nucleation of mitotic spindles are functionally separate. Here, we show that a fission yeast coiled-coil protein, Msd1, is required for anchoring the minus end of spindle microtubules to the centrosome equivalent, the spindle-pole body (SPB). msd1 deletion causes spindle microtubules to abnormally extend beyond SPBs, which results in chromosome missegregation. Importantly, this protruding spindle is phenocopied by the amino-terminal deletion mutant of Alp4, a component of the gamma-tubulin complex (gamma-TuC), which lacks the potential Msd1-interacting domain. We propose that Msd1 interacts with gamma-TuC, thereby specifically anchoring the minus end of microtubules to SPBs without affecting microtubule nucleation.  相似文献   

11.
The proper organization of cortical microtubule arrays is essential for anisotropic growth in plants but how distinct array patterns are formed is not understood. Here, we report a relationship between microtubule dynamics and array organization using transgenic plants expressing modified tubulins. When green fluorescent protein (GFP) or a hemaglutinin epitope tag was fused to the N-terminus of tubulins and expressed in Arabidopsis plants, these tubulins were incorporated into microtubules along with endogenous tubulins. Plants expressing the modified beta-tubulins were phenotypically normal and possessed transversely oriented cortical arrays in the epidermal cells of the root elongation zone; however, the expression of modified alpha-tubulins caused right-handed helical growth, increased trichome branching, and a shallow left-handed (S-form) helical array organization. In cells expressing the modified alpha-tubulins, microtubule dynamicity was suppressed and polymerization was promoted, and GFP-EB1 (End Binding 1) labeled larger regions of the microtubule end more frequently, when compared with control cells. We propose that the N-terminal appendage introduced into alpha-tubulin inhibits GTP hydrolysis, thus producing polymerization-prone microtubules with an extended GTP cap. Consistent with this interpretation, plants expressing an alpha-tubulin mutated in the GTPase-activating domain exhibited similar microtubule properties, with regard to dynamics and the localization of GFP-EB1, and showed right-handed helical growth.  相似文献   

12.
The cortical microtubule array of plant cells appears in early G(1) and remodels during the progression of the cell cycle and differentiation, and in response to various stimuli. Recent studies suggest that cortical microtubules are mostly formed on pre-existing microtubules and, after detachment from the initial nucleation sites, actively interact with each other to attain distinct distribution patterns. The plus end of growing microtubules is thought to accumulate protein complexes that regulate both microtubule dynamics and interactions with cortical targets. The ROP family of small GTPases and the mitogen-activated protein kinase pathways have emerged as key players that mediate the cortical control of plant microtubules.  相似文献   

13.
Molecular encounters at microtubule ends in the plant cell cortex   总被引:1,自引:0,他引:1  
The cortical arrays that accompany plant cell division and elongation are organized by a subtle interplay between intrinsic properties of microtubules, their self-organization capacity and a variety of cellular proteins that interact with them, modify their behaviour and drive organization of diverse, higher order arrays during the cell cycle, cell growth and differentiation. As a polar polymer, the microtubule has a minus and a plus end, which differ in structure and dynamic characteristics, and to which different sets of partners and activities associate. Recent advances in characterization of minus and plus end directed proteins provide insights into both plant microtubule properties and the way highly organized cortical arrays emerge from the orchestrated activity of individual microtubules.  相似文献   

14.
Plants can grow straight or in the twisted fashion exhibited by the helical growth of some climbing plants. Analysis of helical-growth mutants from Arabidopsis has indicated that microtubules are involved in the expression of the helical phenotype. Arabidopsis mutants growing with a right-handed twist have been reported to have cortical microtubules that wind around the cell in left-handed helices and vice versa. Microtubular involvement is further suspected from the finding that some helical mutants are caused by single amino acid substitutions in alpha-tubulin and because of the sensitivity of the growth pattern to anti-microtubule drugs. Insight into the roles of microtubules in organ elongation is anticipated from analyses of genes defined by helical mutations. We investigated the helical growth of the Arabidopsis mutant tortifolia1/spiral2 (tor1/spr2), which twists in a right-handed manner, and found that this correlates with a complex reorientation of cortical microtubules. TOR1 was identified by a map-based approach; analysis of the TOR1 protein showed that it is a member of a novel family of plant-specific proteins containing N-terminal HEAT repeats. Recombinant TOR1 colocalizes with cortical microtubules in planta and binds directly to microtubules in vitro. This shows that TOR1 is a novel, plant-specific microtubule-associated protein (MAP) that regulates the orientation of cortical microtubules and the direction of organ growth.  相似文献   

15.
Land plant cells assemble microtubule arrays without a conspicuous microtubule organizing center like a centrosome. In Arabidopsis thaliana, the TONNEAU1 (TON1) proteins, which share similarity with FOP, a human centrosomal protein, are essential for microtubule organization at the cortex. We have identified a novel superfamily of 34 proteins conserved in land plants, the TON1 Recruiting Motif (TRM) proteins, which share six short conserved motifs, including a TON1-interacting motif present in all TRMs. An archetypal member of this family, TRM1, is a microtubule-associated protein that localizes to cortical microtubules and binds microtubules in vitro. Not all TRM proteins can bind microtubules, suggesting a diversity of functions for this family. In addition, we show that TRM1 interacts in vivo with TON1 and is able to target TON1 to cortical microtubules via its C-terminal TON1 interaction motif. Interestingly, three motifs of TRMs are found in CAP350, a human centrosomal protein interacting with FOP, and the C-terminal M2 motif of CAP350 is responsible for FOP recruitment at the centrosome. Moreover, we found that TON1 can interact with the human CAP350 M2 motif in yeast. Taken together, our results suggest conservation of eukaryotic centrosomal components in plant cells.  相似文献   

16.
Cortical pulling forces on astral microtubules are essential to position the spindle. These forces are generated by cortical dynein, a minus‐end directed motor. Previously, another dynein regulator termed Spindly was proposed to regulate dynein‐dependent spindle positioning. However, the mechanism of how Spindly regulates spindle positioning has remained elusive. Here, we find that the misalignment of chromosomes caused by Spindly depletion is directly provoking spindle misorientation. Chromosome misalignments induced by CLIP‐170 or CENP‐E depletion or by noscapine treatment are similarly accompanied by severe spindle‐positioning defects. We find that cortical LGN is actively displaced from the cortex when misaligned chromosomes are in close proximity. Preventing the KT recruitment of Plk1 by the depletion of PBIP1 rescues cortical LGN enrichment near misaligned chromosomes and re‐establishes proper spindle orientation. Hence, KT‐enriched Plk1 is responsible for the negative regulation of cortical LGN localization. In summary, we uncovered a compelling molecular link between chromosome alignment and spindle orientation defects, both of which are implicated in tumorigenesis.  相似文献   

17.
Plant morphogenesis depends on an array of microtubules in the cell cortex, the cortical array. Although the cortical array is known to be essential for morphogenesis, it is not known how the array becomes organized or how it functions mechanistically. Here, we report the development of an in vitro model that provides good access to the cortical array while preserving the array's organization and, importantly, its association with the cell wall. Primary roots of maize (Zea mays) are sectioned, without fixation, in a drop of buffer and then incubated as desired before eventual fixation. Sectioning removes cytoplasm except for a residuum comprising cortical microtubules, vesicles, and fragments of plasma membrane underlying the microtubules. The majority of the cortical microtubules remain in the cut-open cells for more than 1 h, fully accessible to the incubation solution. The growth zone or more mature tissue can be sectioned, providing access to cortical arrays that are oriented either transversely or obliquely to the long axis of the root. Using this assay, we report, first, that cortical microtubule stability is regulated by protein phosphorylation; second, that cortical microtubule stability is a function of orientation, with divergent microtubules within the array depolymerizing within minutes of sectioning; and third, that the polarity of microtubules in the cortical array is not uniform. These results suggest that the organization of the cortical array involves random nucleation followed by selective stabilization of microtubules formed at the appropriate orientation, and that the signal specifying alignment must treat orientations of +/- 180 degrees as equivalent.  相似文献   

18.
Tungsten (W) is increasingly shown to be toxic to various organisms, including plants. Apart from inactivation of molybdo-enzymes, other potential targets of W toxicity in plants, especially at the cellular level, have not yet been revealed. In the present study, the effect of W on the cortical microtubule array of interphase root tip cells was investigated, in combination with the possible antagonism of W for the pathway of molybdenum (Mo). Pisum sativum seedlings were treated with W, Mo or a combination of the two, and cortical microtubules were examined using tubulin immunofluorescnce and TEM. Treatments with anti-microtubule (oryzalin, colchicine and taxol) or anti-actomyosin (cytochalasin D, BDM or ML-7) drugs and W were also performed. W-affected cortical microtubules were low in number, short, not uniformly arranged and were resistant to anti-microtubule drugs. Cells pre-treated with oryzalin or colchicine and then treated with W displayed W-affected microtubules, while cortical microtubules pre-stabilized with taxol were resistant to W. Treatment with Mo and anti-actomyosin drugs prevented W from affecting cortical microtubules. Cortical microtubule recovery after W treatment was faster in Mo solution than in water. The results indicate that cortical microtubules of plant cells are indirectly affected by W, most probably through a mechanism depending on the in vivo antagonism of W for the Mo-binding site of Cnx1 protein.  相似文献   

19.
Indirect immunofluorescence microscopy was used to survey the three-dimensional distribution of microtubules throughout the cell cycle in the green alga Mougeotia. The network of microtubules present in the cortex of the cells at interphase gradually disappeared before mitosis. A band of cortical microtubules reminiscent of the preprophase band of higher plants surrounded the nuclei of some preprophase cells undergoing cortical microtubule disassembly. Longitudinally oriented bundles of microtubules appeared at the future spindle poles on either side of the nuclei in prophase. These bundles disappeared gradually as the spindle microtubule arrays formed. New spindles had broad poles but these became quite pointed before anaphase. Interzonal microtubules appearing at anaphase persisted until the end of nuclear migration, by which time they were concentrated into narrow bundles on either side of the centripetally forming crosswalls. During decondensation of the chromosomes and early nuclear migration, the spindle poles persisted as sites of microtubule concentration. New arrays of microtubules radiated from these microtubule centers into the cytoplasm ahead of the migrating nuclei. After cytokinesis, reinstatement of cortical microtubules was best observed in regions of the cells remote from the nuclei and associated microtubules. In contrast to higher plants, the first detectable cortical microtubules were short and already oriented transverse to the long axes of the cells.  相似文献   

20.
Cellulose and pectin are major components of primary cell walls in plants, and it is believed that their mechanical properties are important for cell morphogenesis. It has been hypothesized that cortical microtubules guide the movement of cellulose microfibril synthase in a direction parallel with the microtubules, but the mechanism by which this alignment occurs remains unclear. We have previously identified cobtorin as an inhibitor that perturbs the parallel relationship between cortical microtubules and nascent cellulose microfibrils. In this study, we searched for the protein target of cobtorin, and we found that overexpression of pectin methylesterase and polygalacturonase suppressed the cobtorin-induced cell-swelling phenotype. Furthermore, treatment with polygalacturonase restored the deposition of cellulose microfibrils in the direction parallel with cortical microtubules, and cobtorin perturbed the distribution of methylated pectin. These results suggest that control over the properties of pectin is important for the deposition of cellulose microfibrils and/or the maintenance of their orientation parallel with the cortical microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号