首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genome-scale metabolic reconstructions are routinely used for the analysis and design of metabolic engineering strategies for production of primary metabolites. The use of such reconstructions for metabolic engineering of antibiotic production is not common due to the lack of simple design algorithms in the absence of a cellular growth objective function. Here, we present the metabolic network reconstruction for the erythromycin producer Saccharopolyspora erythraea NRRL23338. The model was manually curated for primary and secondary metabolism pathways and consists of 1,482 reactions (2,075 genes) and 1,646 metabolites. As part of the model validation, we explored the potential benefits of supplying amino acids and identified five amino acids “compatible” with erythromycin production, whereby if glucose is supplemented with this amino acid on a carbon mole basis, the in silico model predicts that high erythromycin yield is possible without lowering biomass yield. Increased erythromycin titre was confirmed for four of the five amino acids, namely valine, isoleucine, threonine and proline. In bioreactor experiments, supplementation with 2.5?% carbon mole of valine increased the growth rate by 20?% and simultaneously the erythromycin yield on biomass by 50?%. The model presented here can be used as a framework for the future integration of high-throughput biological data sets in S. erythraea and ultimately to realise strain designs capable of increasing erythromycin production closer to the theoretical yield.  相似文献   

2.
Effects of feeding different available nitrogen sources from 80 h in erythromycin biosynthesis phase on the erythromycin A (Er-A) production were investigated in 50 l fermenter. Feeding corn steep liquor and yeast extract, the Er-A production was enhanced, while the biotransformation from erythromycin C (Er-C) to Er-A had no increase. When ammonium sulphate was fed at high feeding rate, the maximal Er-A production and ratio of Er-A to Er-C were 7953 U/ml and 98.18:1 at 184 h, respectively, which were higher than that of the control (6742 U/ml and 5.47:1). The feeding ammonium sulphate process was successfully scaled up from 50 l to 25 m3 fermenter. The maximal Er-A production reached 7938 U/ml at 203 h, which was enhanced by 22.1% compared with the control (6501 U/ml at 192 h). The ratio of Er-A to Er-C was 24.05:1, which was higher than that of the control (4.77:1).  相似文献   

3.
4.
5.
A process for high level production of rapamycin by Streptomyces hygroscopicus using statistical designs and feeding strategy was developed. The amino acids (i.e. Lys, Tyr, and Gln) for precursor supply were screened out in the initial phase of fermentation. The optimum levels determined with Box-Behnken design were Lys 20, Tyr 4, and Gln 3 g/l. In the rapamycin biosynthesis phase, the important component, ammonium sulphate, was also identified. A novel two-stage feeding strategy was developed successfully to increase the flux of rapamycin biosynthesis, in which the optimized amino acid components were fed in the initial phase of fermentation, and then switched to feed 2 g/l ammonium sulphate at 72 h. The maximal rapamycin production reached 860.6 mg/l in a 7 l fermentor, which was 182 % higher than that of the control. This was the first report to integrate precursor engineering and cell physiological regulation methods to optimize rapamycin production.  相似文献   

6.
7.
8.
Improvement of Erythromycin A (Er-A) production and purity by metabolic engineering of the industrial erythromycin-producing strains Saccharopolyspora erythraea strians ZL1004 and ZL1007, in which the amounts of tailoring enzymes EryK (a P450 hydroxylase) and EryG (an S-adenosylmethionine-dependent O-methyltransferase) for biotransformation of Erythromycin D to Er-A were modulated, was performed in a 50 L fermentor. Addition of 15 g/L of corn steep liquor to the medium increased Er-A production; maximum Er-A production was 8,196 U/mL at 191 h, which was 81.8% higher than that of control (4,507 U/mL at 184 h). Er-B impurities were completely eliminated, whereas Er-C impurities were only 153 U/mL at 191 h. Analysis of intra- and extracellular metabolites and key enzyme activities in central carbon metabolism revealed that the pool of TCA cycle intermediates was enhanced by the addition of corn steep liquor and induced an increase in erythromycin biosynthesis. There were no significant differences between strains ZL1004 and ZL1007 regarding Er-A production and impurity accumulation. Compared to wild type strain, Er-A production was improved by 23.9% while Er-C was reduced by 83.9% and Er-B was completely eliminated. Furthermore, fermentation of recombinant strain ZL1004 was successfully scaled up from laboratory scale (50 L fermentor) to industrial scale (25 and 132 m3), with similar levels of Er-A production and purity obtained.  相似文献   

9.
10.
A process for efficient production of erythromycin by Saccharopolyspora erythraea using statistical designs and feeding strategy was developed. The critical nutrient components were selected in accordance with fractional factorial design and were further optimized via response surface methodology. Three significant components (ZnSO4, citric acid threonine) were identified for the optimization study. The optimum levels of these significant variables were determined with Box–Behnken design, which were ZnSO4 0.039 g/l, citric acid 0.24 g/l and threonine 0.42 g/l, respectively. A novel feeding strategy based on oxygen uptake rate (OUR) measurement was developed successfully to increase the flux of erythromycin biosynthesis, in which the optimized nutrient components was fed in the 50 l stirred bioreactor when OUR began to decline at 46 h. The maximum erythromycin production reached 10,622 U/ml, which was 11.7% higher than the control in the same cultivation conditions. It was the first report to integrate physiological parameter OUR and statistical methods to optimize erythromycin production.  相似文献   

11.
With the aim of analysing the relative importance of sugar supply and nitrogen nutrition for the regulation of sulphate assimilation, the regulation of adenosine 5'-phosphosulphate reductase (APR), a key enzyme of sulphate reduction in plants, was studied. Glucose feeding experiments with Arabidopsis thaliana cultivated with and without a nitrogen source were performed. After a 38 h dark period, APR mRNA, protein, and enzymatic activity levels decreased dramatically in roots. The addition of 0.5% (w/v) glucose to the culture medium resulted in an increase of APR levels in roots (mRNA, protein and activity), comparable to those of plants kept under normal light conditions. Treatment of roots with d-sorbitol or d-mannitol did not increase APR activity, indicating that osmotic stress was not involved in APR regulation. The addition of O-acetyl-l-serine (OAS) also quickly and transiently increased APR levels (mRNA, protein, and activity). Feeding plants with a combination of glucose and OAS resulted in a more than additive induction of APR activity. Contrary to nitrate reductase, APR was also increased by glucose in N-deficient plants, indicating that this effect was independent of nitrate assimilation. [35S]-sulphate feeding experiments showed that the addition of glucose to dark-treated roots resulted in an increased incorporation of [35S] into thiols and proteins, which corresponded to the increased levels of APR activity. Under N-deficient conditions, glucose also increased thiol labelling, but did not increase the incorporation of label into proteins. These results demonstrate that (i) exogenously supplied glucose can replace the function of photoassimilates in roots; (ii) APR is subject to co-ordinated metabolic control by carbon metabolism; (iii) positive sugar signalling overrides negative signalling from nitrate assimilation in APR regulation. Furthermore, signals originating from nitrogen and carbon metabolism regulate APR synergistically.  相似文献   

12.
13.
14.
When incubated at pH 4–5, Chlorella freshly isolated from symbiosis with Hydra viridissima PALLAS 1766 (green hydra) release large amounts of photosynthetically fixed carbon in the form of maltose, and assimilation of inorganic N is inhibited. Physiological responses to N starvation of the cultured 3N813A strain of maltose-releasing Chlorella differed from those caused by 48 h of maltose release induced by low pH. N starvation increased rates of ammonium assimilation at pH 7.0 in light or darkness, and ammonium assimilation in darkness stimulated cell respiration. In contrast, cells pretreated at pH 5.0 to induce maltose release were unable to take up ammonium at pH 7.0 unless supplied with an external carbon source such as bicarbonate, acetate, or succinate, and rates of uptake were similar to control cells. Freshly isolated symbionts displayed a similar dependency. Rates of ammonium uptake by cells pretreated at pH 5.0 were reduced in darkness and did not stimulate cell respiration. N-starved cells supplied with ammonium also showed a large short-term increase in glutamine pools at the expense of glutamate, as might be expected if large amounts of ammonium were rapidly assimilated via glutamine synthetase/glutamate synthase, whereas after long-term maltose release cells showed only a small increase in glutamine when supplied with ammonium. Furthermore, maltose release caused a fall in pool sizes of a number of amino acids, including glutamine and glutamate, and also caused a decrease in pool sizes of 2-oxoglutarate and phospho-enol-pyruvate, which are required for ammonium assimilation into amino acids. Cells stimulated to synthesize and release maltose may be unable to assimilate ammonium and synthesize amino acids because of diversion of fixed carbon from N metabolism. We estimate that 40–50% affixed C is required for maximal maltose synthesis, whereas up to 30% fixed C is required for ammonium assimilation. These results are discussed in the context of host regulation of symbiotic algal growth.  相似文献   

15.
Because it is the precursor for various essential cellular components, the amino acid serine is indispensable for every living organism. In plants, serine is synthesized by two major pathways: photorespiration and the phosphorylated pathway of serine biosynthesis (PPSB). However, the importance of these pathways in providing serine for plant development is not fully understood. In this study, we examine the relative contributions of photorespiration and PPSB to providing serine for growth and metabolism in the C3 model plant Arabidopsis thaliana. Our analyses of cell proliferation and elongation reveal that PPSB-derived serine is indispensable for plant growth and its loss cannot be compensated by photorespiratory serine biosynthesis. Using isotope labeling, we show that PPSB-deficiency impairs the synthesis of proteins and purine nucleotides in plants. Furthermore, deficiency in PPSB-mediated serine biosynthesis leads to a strong accumulation of metabolites related to nitrogen metabolism. This result corroborates 15N-isotope labeling in which we observed an increased enrichment in labeled amino acids in PPSB-deficient plants. Expression studies indicate that elevated ammonium uptake and higher glutamine synthetase/glutamine oxoglutarate aminotransferase (GS/GOGAT) activity causes this phenotype. Metabolic analyses further show that elevated nitrogen assimilation and reduced amino acid turnover into proteins and nucleotides are the most likely driving forces for changes in respiratory metabolism and amino acid catabolism in PPSB-deficient plants. Accordingly, we conclude that even though photorespiration generates high amounts of serine in plants, PPSB-derived serine is more important for plant growth and its deficiency triggers the induction of nitrogen assimilation, most likely as an amino acid starvation response.

The phosphorylated pathway of serine biosynthesis is required to synthesize serine for plant growth; and its deficiency triggers an amino acid starvation response by inducing nitrogen assimilation.  相似文献   

16.
The aim of the present study was to optimize the feeding proportion of glucose and propanol for erythromycin biosynthesis by real-time monitoring and exploring its limited ratio by the on-line multi-frequency permittivity measurement. It was found that the capacitance values were sensitive to the variation of biomass concentration and microbial morphology as well as the true state of cell growth. It was most favorable to both cell growth and secondary metabolism to keep the ratio of glucose to propanol at 4.3 (g/g). The specific growth rate calculated by the capacitance measurement correctly and accurately reflected the cell physiological state. An appropriate feed rate of propanol was crucial for cell growth and secondary metabolism, as well as to improve the quality of erythromycin-A. In addition, the erythromycin production titer (10,950 U/mL) was further enhanced by 4 % when the propanol feed was regulated by step-down strategy based on both OUR (oxygen uptake rate) and the on-line monitoring capacitance.  相似文献   

17.
3-Hydroxybenzoate:coenzyme A ligase, an enzyme involved in xanthone biosynthesis, was detected in cell-free extracts from cultured cells of Centaurium erythraea Rafn. The enzyme was separated from 4-coumarate:coenzyme A ligase by fractionated ammonium sulphate precipitation and hydrophobic interaction chromatography. The CoA ligases exhibited different substrate specificities. 3-Hydroxybenzoate:coenzyme A ligase activated 3-hydroxybenzoic acid most efficiently and lacked affinity for cinnamic acids. In contrast, 4-coumarate:CoA ligase mainly catalyzed the activation of 4-coumaric acid but did not act on benzoic acids. The two enzymes were similar with respect to their relative molecular weight, their pH and temperature optima, their specific activity and the changes in their activity during cell culture growth. Received: 23 September 1996 / Accepted: 28 November 1996  相似文献   

18.
Hong  Ming  Mou  Han  Liu  Xiaoyun  Huang  Mingzhi  Chu  Ju 《Bioprocess and biosystems engineering》2017,40(9):1337-1348

Metabolomics analysis is extremely essential to explore the metabolism characteristics of Saccharopolyspora erythraea. The lack of suitable methods for the determination of intracellular metabolites, however, hinders the application of metabolomics analysis for S. erythraea. Acyl-CoAs are important precursors of erythromycin; phosphorylated sugars are intermediate metabolites in EMP pathway or PPP pathway; organic acids are intermediate metabolites in TCA cycle. Reliable determination methods for intracellular acyl-CoAs, phosphorylated sugars, and organic acids of S. erythraea were designed and validated in this study. Using the optimized determination methods, the pool sizes of intracellular metabolites during an erythromycin fermentation process were precisely quantified by isotope dilution mass spectroscopy method. The quantification results showed that the specific erythromycin production rate was positively correlated with the pool sizes of propionyl-CoA as well as many other intracellular metabolites. The experiment under the condition without propanol, which is a precursor of propionyl-CoA and an important substrate in industrial erythromycin production process, also corroborated the correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size. As far as we know, this is the first paper to conduct the metabolomics analysis of S. erythraea, which makes the metabolomics analysis of S. erythraea in the industrial erythromycin production process possible.

  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号