首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of 5-bromodeoxyuridine (BrdU) on cardiac muscle differentiation   总被引:3,自引:0,他引:3  
Cultured cardiac muscle cells undergo cell division and form beating progeny. Incorporation of BrdU into the nuclei of daughter cells does not suppress their ability to beat and form cross-striated myofibrils. Fluorescence microscopy of clones derived from single beating cells fed with BrdU-treated medium for over 2 weeks reveal cytoplasmic fibrils stainable with fluorescein-labeled antimyosin. The effect of BrdU on the emergence of cardiac muscle phenotype was also investigated by utilizing cardiac myogenic precursor cells from precardiac mesoderm in early embryos (stage 4–stage 9). These studies show that the cardiac myogenic cells fall into the following categories with respect to their ability to express the differentiated phenotype in the presence of BrdU: (1) precardiac mesodermal cells that are inhibited; (2) precardiac mesodermal cells that are not inhibited; and (3) beating cardiac muscle cells that are not inhibited. The entry of precardiac cells from the first category to the second and to the third appears to be unsynchronized.  相似文献   

2.
DNA synthesis, mitosis, and differentiation in cardiac myogenesis   总被引:7,自引:0,他引:7  
Cardiac muscle cells obtained by trypsinizing 5-day chick embryonic heart were cultured as single cells in separate culture dishes. Using this technique, problems of heterotypic cell interactions, “overgrowth” of one cell type, etc., are eliminated. Experiments performed on these single cell cultures show that the muscle cells in the embryonic chick hearts differ in morphology, including content of cross-striated myofibrils; in ability to synthesize DNA and undergo mitosis; and in frequency of contraction. Contracting cells containing cross-striated myofibrils undergo mitosis in vitro, giving rise to spontaneously beating daughter cells. These daughter cells contain cytoplasmic fibrils, which bind fluorescein-labeled antimyosin immediately after cytokinesis. Some cardiac muscle cells from 5-day heart do not divide in culture; the rest undergo 1–5 doublings. This preliminary investigation suggests that the new muscle cells formed during cardiac growth are derived from mitotically active “overtly” differentiated cardiac muscle cells.  相似文献   

3.
Cardiac muscle cells from newt embryos were cultured at relatively low cell density. Within 10 days in culture, 2 cell types (spindle and flat type) were distinguished both among beating and non-beating cells. Mitosis in single beating cells was frequently observed both in spindle and flat cells. Some cells maintained almost constant contractile activities throughout the mitotic stages, while the others transiently stopped beating during mitosis, which accords well to the case in chick embryos (1). Ultra-thin section shows the presence of myofibril's structure in a dividing cell, as shown in newborn rats (2, 3, 4), chick embryos (1, 5, 6, 7) and adult newts (8, 9). As a consequence of mitosis, 3 types (spindle, flat and mixed type) of beating colonies developed after 34 weeks in culture. Cell proliferation was accompanied with pulsation and could be directly pursued till the 4th division, suggesting that differentiated myocardiac cells with myofibrils proliferate by their mitoses in vivo , maintaining rhythmic contraction.  相似文献   

4.
We herein examine the effect of cardiac troponin T (CTnT) suppression in cultured chicken cardiomyocytes derived from embryonic cardiac ventricular muscle. TnT is an important protein participating in regulation of striated muscle contraction, but it is not clear whether TnT contributes to the formation of sarcomere structure in myofibrils. Double-stranded RNA homologous to the nucleotide sequence of CTnT (CTnT-siRNA) was introduced into cultured muscle cells two days after plating. Transfection efficiency was above 80%. Immunoblot analyses suggested that the expression of CTnT progressively falls for the three consecutive days after transfection, but partly reappears on the fourth day. Maximum suppression occurs three days after transfection, with almost invisible CTnT protein on immunoblots in all the examined conditions: 0.5-2 nmol CTnT-siRNA towards 1-3 x 10(6) cells. The suppression was specific to CTnT, and the other myofibrillar proteins such as myosin, connectin/titin, tropomyosin, alpha-actinin, and troponin I were all present in transfected cells. The following functional and morphological changes were detected in CTnT-suppressed cells. The population of beating cells decreased significantly after transfection, when compared to control cells. A part of CTnT-suppressed cells showed two non-overlapping types of morphological changes: 1) myofibrils presenting unusually long Z-Z intervals; 2) myofibrils with irregular small striations in cells not connected at their adhesion interfaces of a jagged-appearance. Thus, our results reveal that CTnT is important for stable beating in cultured ventricular muscle cells, and also to some extent, for maintaining myofibrillar structure and cell-to-cell adhesion.  相似文献   

5.
Adult mammalian cardiac muscle cells in culture   总被引:4,自引:0,他引:4  
A C Nag  M Cheng 《Tissue & cell》1981,13(3):515-523
Adult rat cardiac muscle cells were isolated from the ventricle by a retrograde perfusion technique through the aorta (Nag and Zak, 1979). These single, isolated cardiac muscle cells were cultured for 4 weeks. Throughout the culture period, a small number of muscle cells retained their cylindrical shape, while the rest exhibited alterations in shape and size assuming a flattened body of irregular shape with pseudopodia-like processes and thereby resembling embryonic/neonatal cardiac muscle cells in culture. Transmission electron microscopy revealed that the cylindrical muscle cells contained compactly arranged myofibrils and cellular organelles, similar to those of freshly isolated and in vivo cells. A few irregularly shaped cardiac muscle cells were similar to the cylindrical cells in their internal structural organization. Most of the irregular cells exhibited less myofibrillar content than that of the freshly dissociated and in vivo cells. Myofibrils in the irregular cells were widely spaced and myofilament of some of the myofibrils were loosely bunched. In addition, scattered patches of myofibrils and free myofilaments were observed in many of these cells. The internal structural organization of these irregularly shaped cardiac muscle cells closely resembled the embryonic and neonatal cardiac muscle cells in vitro and in vivo. Most of the muscle cells in culture continued to contract spontaneously, and electron microscope studies clearly indicated that they underwent dedifferentiation. Autoradiography studies demonstrated that the cylindrical and irregularly shaped cardiac muscle cells underwent DNA synthesis and cell division in culture.  相似文献   

6.
Fluorescently labeled alpha-actinin, isolated from chicken gizzards, breast muscle, or calf brains, was microinjected into cultured embryonic myotubes and cardiac myocytes where it was incorporated into the Z-bands of myofibrils. The localization in injected, living cells was confirmed by reacting permeabilized myotubes and cardiac myocytes with fluorescent alpha-actinin. Both living and permeabilized cells incorporated the alpha-actinin regardless of whether the alpha-actinin was isolated from nonmuscle, skeletal, or smooth muscle, or whether it was labeled with different fluorescent dyes. The living muscle cells could beat up to 5 d after injection. Rest-length sarcomeres in beating myotubes and cardiac myocytes were approximately 1.9-2.4 microns long, as measured by the separation of fluorescent bands of alpha-actinin. There were areas in nearly all beating cells, however, where narrow bands of alpha-actinin, spaced 0.3-1.5 micron apart, were arranged in linear arrays giving the appearance of minisarcomeres. In myotubes, alpha-actinin was found exclusively in these closely spaced arrays for the first 2-3 d in culture. When the myotubes became contraction-competent, at approximately day 4 to day 5 in culture, alpha-actinin was localized in Z-bands of fully formed sarcomeres, as well as in minisarcomeres. Video recordings of injected, spontaneously beating myotubes showed contracting myofibrils with 2.3 microns sarcomeres adjacent to noncontracting fibers with finely spaced periodicities of alpha-actinin. Time sequences of the same living myotube over a 24-h period revealed that the spacings between the minisarcomeres increased from 0.9-1.3 to 1.6-2.3 microns. Embryonic cardiac myocytes usually contained contractile networks of fully formed sarcomeres together with noncontractile minisarcomeres in peripheral areas of the cytoplasm. In some cells, individual myofibrils with 1.9-2.3 microns sarcomeres were connected in series with minisarcomeres. Double labeling of cardiac myocytes and myotubes with alpha-actinin and a monoclonal antibody directed against adult chicken skeletal myosin showed that all fibers that contained alpha-actinin also contained skeletal muscle myosin. This was true whether alpha-actinin was present in Z-bands of fully formed sarcomeres or present in the closely spaced beads of minisarcomeres. We propose that the closely spaced beads containing alpha-actinin are nascent Z-bands that grow apart and associate laterally with neighboring arrays containing alpha-actinin to form sarcomeres during myofibrillogenesis.  相似文献   

7.
A C Nag  C J Healy  M Cheng 《Tissue & cell》1979,11(2):231-248
Pieces of hearts from adult newts were cultured up to 2 months. Within 7 days of culture, approximately 37% of the cardiac explants were attached to the substrate and more than 33% of the attached explants and approximately 15% of the unattached explants established pulsation rates ranging from 3 to 67 beats/min. The control and cultured explants were processed at weekly intervals for electron microscopy. The diameter of the control cardiac muscle cells ranged approximately 3-5 micron. The cell surface was provided with microvilli. The intercellular spaces ranged approximately 150-500 A. The intercalated discs lacked the step-like courses observed in the mammalian cardiac muscle. Sarcoplasmic reticulum was scanty. Desmosomal-dense materials were frequently continuous with the Z-bands of both control and cultured cardiac muscle cells. The transverse tubular system and gap junction were absent in newt ventricles. The functional implications of these characterisitics are discussed. At the end of 1 week of culture, the surfaces of the explants were covered by one or more layers of non-muscle cells, and the core of the explants consisted mostly of cardiac muscle cells. In a few cardiac muscle cells the myofibrillar organization was disrupted, resulting in the distribution of scattered patches of myofibrils and free myofilaments in the sarcoplasm. A small number of intact muscle cells contained a considerable number of dense granules in the sarcoplasm. At 15 days in culture, a large number of muscle cells showed structural features reminiscent of embryonic cardiac muscle cells. These cells possessed patches of myofibrils, scattered myofilaments and scanty sarcoplasmic reticulum along with other cellular organelles and inclusions. Several of these altered cardiac muscle cells contained mitotic figures. The cardiac explants maintained the initial beating rate until the end of 2 months of culture, except for the 11% of the explants which stopped beating. By 3-4 weeks in culture, most of the cardiac muscle cells possessed the altered cell morphology mentioned above. The explants after 60 days in culture became more flattened than the earlier explants. The intact cardiac muscle cells were rare, and the cores of the explants were mostly occupied by the altered cardiac muscle cells. It is evident from our studies that the cardiac muscle cells have undergone dedifferentiation in long-term culture, and that this dedifferentiation process has yet had no effect in the maintenance of contractility of the explants. Furthermore, these dedifferentiated cardiac muscle cells are capable of DNA synthesis and mitosis.  相似文献   

8.
Development of acetylcholine sensitivity during myogenesis   总被引:23,自引:0,他引:23  
The development of acetylcholine (ACh) sensitivity during myogenesis has been studied by iontophoretic application of ACh and intracellular recording from myogenic cells from rat forelimbs cultured in vitro. The fine structure of the cells was then examined by electron microscopy. The development of ACh sensitivity is correlated with the appearance of thick and thin filaments and precedes myofibril formation. All myotubes are sensitive to ACh. Myogenic cells arising by cell division in vitro can become sensitive to ACh and construct myofibrils without cell fusion. When cell fusion is inhibited by calcium ion deficiency or when cell division is blocked by FUdR, many mononucleate, striated, ACh-sensitive cells appear in culture. While ACh sensitivity appears at the onset of muscle differentiation, ACh receptors seem to play no role in the early events of myogenesis, as evidenced by the failure of receptor block or of desensitization to interfere with myogenesis. The concurrent appearance of myofilaments and ACh sensitivity is discussed in relation to the early events and control mechanisms of myogenesis.  相似文献   

9.
Summary A long-term cell culture system for adult cardiomyopathic hamster cardiac muscle cells has been established. The diseased and control hearts were dissociated into single cell suspension with the modifications of our previous technique using collagenase and hyaluronidase as applied to the dissociation of the adult rat heart. The postperfusion of the diseased heart with Krebs-Ringer phosphate buffer and bovine serum albumin was very helpful in obtaining greater yield of viable diseased muscle cells; the cells were cultured for 4 wk. Approximately 60% of the myocytes from the diseased heart and 85% of the myocytes from the normal heart attached to the substrates and survived throughout the culture period. Approximately 60 to 70% of the cardiac myocytes from the diseased and control hearts were bi- or multinucleated; 30% of the diseased and 80% of the normal myocytes showed rhythmic contractility. Electron microscopy revealed the presence of two kinds of cardiac muscle cells in the diseased cell culture on the basis of their myofibril content: one with scanty myofibrils and another with abundant myofibrils. Myocytes with sparse myofibrils showed certain characteristic features that included autophagic vacuoles, amorphous matrix of fine filamentous texture, scattered strips of myofibrils, and abnormal organization of the Z-line. Cardiac muscle cells with abundant myofibrillar content contained unorganized myofibrils in certain sarcomeres. These studies demonstrate the feasibility of maintaining diseased cardiac muscle cells from adult cardiomyopathic hamsters for at least 4 wk in monolayer culture. This study was supported by a grant from the American Heart Association of Michigan, National Institutes of Health grant HL-25482, and by an Oakland University Biomedical Research Support Grant.  相似文献   

10.
De novo assembly of myofibrils was investigated in explants of precardiac mesoderm from quail embryos to address a controversy about different models of myofibrillogenesis. The sequential expression of sarcomeric components was visualized in double- and triple-stained explants before, during, and just after the first cardiomyocytes began to beat. In explants from stage 6 embryos, cultured for 10 h, ectoderm, endoderm, and the precardiac mesoderm displayed arrays of stress fibers with alternating bands of the nonmuscle isoforms of alpha-actinin and myosin IIB. With increasing time in culture, mesoderm cells contained fibrils composed of actin, nonmuscle myosin IIB, and sarcomeric alpha-actinin. Several hours later, before beating occurred, both nonmuscle and muscle myosin II localized in some of the fibrils in the cells. Concentrations of muscle myosin began as thin bundles, dispersed in the cytoplasm, often overlapping one another, and progressed to small, aligned A-band-sized aggregates. The amount of nonmuscle myosin decreased dramatically when Z-bands formed, the muscle myosin became organized into A-bands, and the cells began beating. The sequential changes in protein composition of the fibrils in the developing muscle cells supports the model of myofibrillogenesis in which assembly begins with premyofibrils and progresses through nascent myofibrils to mature myofibrils.  相似文献   

11.
Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of this work was to understand how cellular contact with such a domain affects various mechanical changes involved in cardiac muscle cell remodeling. Myocytes were maintained in 3D gels over 5 days in the presence or absence of 100?μm-long microrods, and the effect of this local heterogeneity on cell behavior was analyzed via several imaging techniques. Microrod abutment resulted in approximately twofold increases in the maximum displacement of spontaneously beating myocytes, as based on confocal microscopy scans of the gel xy-plane or the myocyte long axis. In addition, microrods caused significant increases in the proportion of aligned myofibrils (≤20° deviation from long axis) in fixed myocytes. Microrod-related differences in axial contraction could be abrogated by long-term interruption of certain signals of the RhoA-/Rho-associated kinase (ROCK) or protein kinase C (PKC) pathway. Furthermore, microrod-induced increases in myocyte size and protein content were prevented by ROCK inhibition. In all, the data suggest that microdomain heterogeneity in 3D appears to promote the development of axially aligned contractile machinery in muscle cells, an observation that may have relevance to a number of cardiac tissue engineering interventions.  相似文献   

12.
Krp1, also called sarcosin, is a cardiac and skeletal muscle kelch repeat protein hypothesized to promote the assembly of myofibrils, the contractile organelles of striated muscles, through interaction with N-RAP and actin. To elucidate its role, endogenous Krp1 was studied in primary embryonic mouse cardiomyocytes. While immunofluorescence showed punctate Krp1 distribution throughout the cell, detergent extraction revealed a significant pool of Krp1 associated with cytoskeletal elements. Reduction of Krp1 expression with siRNA resulted in specific inhibition of myofibril accumulation with no effect on cell spreading. Immunostaining analysis and electron microscopy revealed that cardiomyocytes lacking Krp1 contained sarcomeric proteins with longitudinal periodicities similar to mature myofibrils, but fibrils remained thin and separated. These thin myofibrils were degraded by a scission mechanism distinct from the myofibril disassembly pathway observed during cell division in the developing heart. The data are consistent with a model in which Krp1 promotes lateral fusion of adjacent thin fibrils into mature, wide myofibrils and contribute insight into mechanisms of myofibrillogenesis and disassembly.  相似文献   

13.
The two major proteins in the I-bands of skeletal muscle, actin and tropomyosin, were each labeled with fluorescent dyes and microinjected into cultured cardiac myocytes and skeletal muscle myotubes. Actin was incorporated along the entire length of the I-band in both types of muscle cells. In the myotubes, the incorporation was uniform, whereas in cardiac myocytes twice as much actin was incorporated in the Z-bands as in any other area of the I-band. Labeled tropomyosin that had been prepared from skeletal or smooth muscle was incorporated in a doublet in the I-band with an absence of incorporation in the Z-band. Tropomyosin prepared from brain was incorporated in a similar pattern in the I-bands of cardiac myocytes but was not incorporated in myotubes. These results in living muscle cells contrast with the patterns obtained when labeled actin and tropomyosin are added to isolated myofibrils. Labeled tropomyosins do not bind to any region of the isolated myofibrils, and labeled actin binds to A-bands. Thus, only living skeletal and cardiac muscle cells incorporate exogenous actin and tropomyosin in patterns expected from their known myofibrillar localization. These experiments demonstrate that in contrast to the isolated myofibrils, myofibrils in living cells are dynamic structures that are able to exchange actin and tropomyosin molecules for corresponding labeled molecules. The known overlap of actin filaments in cardiac Z-bands but not in skeletal muscle Z-bands accounts for the different patterns of actin incorporation in these cells. The ability of cardiac myocytes and non-muscle cells but not skeletal myotubes to incorporate brain tropomyosin may reflect differences in the relative actin-binding affinities of non-muscle tropomyosin and the respective native tropomyosins. The implications of these results for myofibrillogenesis are presented.  相似文献   

14.
Differential response of stress fibers and myofibrils to gelsolin   总被引:6,自引:0,他引:6  
The actin-severing activity of human platelet gelsolin was analyzed on embryonic skeletal and cardiac myofibrils, and on stress fibers in non-muscle cells. These subcellular structures, although in all three cell types composed of contractile proteins arranged in sarcomeric units, were found to respond differently to gelsolin. The myofibrils in permeabilized myotubes or cardiac cells, as well as in living, microinjected muscle cells proved resistant to a wide concentration range of gelsolin. The same was found for the "mini-sarcomeres" which are seen in developing muscle cells. In contrast, stress fibers in microinjected fibroblasts or epithelial cells, as well as in permeabilized cells, were broken down rapidly by the platelet gelsolin. We conclude from these results that the mini-sarcomeres in embryonic myotubes and cardiac myocytes are not identical with stress fibers.  相似文献   

15.
Homozygous recessive cardiac mutant gene c in the axolotl, Ambystoma mexicanum, results in a failure of the embryonic heart to initiate beating. Previous studies show that mutant axolotl hearts fail to form sarcomeric myofibrils even though hearts from their normal siblings exhibit organized myofibrils beginning at stage 34–35. In the present study, the proteins titin and myosin are studied using normal (+/+) axolotl embryonic hearts at stages 26–35. Additionally, titin is examined in normal (+/c) and cardiac mutant (c/c) embryonic axolotl hearts using immunofluorescent microscopy at stages 35–42. At tailbud stage-26, the ventromedially migrating sheets of precardiac mesoderm appear as two-cell-layers. Myosin shows periodic staining at the cell peripheries of the presumptive heart cells at this stage, whereas titin is not yet detectable by immunofluorescent microscopy. At preheartbeat stages 32–33, a myocardial tube begins to form around the endocardial tube. In some areas, periodic myosin staining is found to be separated from the titin staining; other areas in the heart at this stage show a co-localization of the two proteins. Both titin and myosin begin to incorporate into myofibrils at stage 35, when normal hearts initiate beating. Additionally, areas with amorphous staining for both proteins are observed at this stage. These observations indicate that titin and myosin accumulate independently at very early premyofibril stages; the two proteins then appear to associate closely just before assembly into myofibrils. Staining for titin in freshly frozen and paraffin-embedded tissues of normal embryonic hearts at stages 35, 39, and 41 reveals an increased organization of the protein into sarcomeres as development progresses. The mutant siblings, however, first show titin staining only limited to the peripheries of yolk platelets. Although substantial quantities of titin accumulate in mutant hearts at later stages of development (39 and 41), it does not become organized into myofibrils as in normal cells at these stages. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Muscle cells in the left ventricular walls of four markedly hypertrophied human hearts (above 600 gm) were compared with muscle cells in four non-hypertrophied hearts (up to 310 gm). Blocks of tissue obtained postmortem within 6 hours were processed for light and electron microscopy under conditions suitable for good preservation of myofibrils. A lattice parameter, qh, was defined as the number of myosin filaments per square micron in either H zones or A bands. By the use of methods of electron microscopy, qh was determined for perpendicular cross-sections of A bands in a large number of well preserved myofibrils of muscle cells in both groups of hearts. Statistical evaluation of the distributions of values of qh revealed no significant difference between the two groups. Thus, the myofilament lattices in hypertrophied cells were geometrically within normal limits. Planimetric measurements of cross-sectional areas of muscle fibers were made, using photomicrographs obtained from one representative hypertrophied heart and from one control. The size-frequency distribution of the measurements showed a marked difference between the two hearts, and confirmed the presence of hypertrophy of muscle cells. Counts of the number of myofibrils per muscle cell were determined for samples from the same two hearts, evaluated statistically, and found to be significantly higher for the hypertrophied heart. It is proposed (a) that myofibrils in hypertrophied heart muscle cells have filament lattices with geometrical arrangement and macromolecular parameters that are the same as those found in myofibrils of normal heart muscle cells; and (b) that in hypertrophy the number of myofilaments increases through formation of new myofibrils, and possibly also by addition of filaments to preexisting myofibrils.  相似文献   

17.
Pathalogical changes in murine skeletal muscle cells induced by ACL (Agkistrodon contortix laticinctus, Broad-Banded Copperhead) myotoxin in vivo were compared to pathological changes induced by an influx of Ca2+ and other ions into cut skeletal muscle cells in vitro in the absence of myotoxin. In vivo, ACL myotoxin induced a rapid myonecrosis characterized by densely clumped myofibrils in the cytoplasm. In vitro, this pathological change was not produced by incubating skeletal muscle cells in Ca2+ concentrations as high as 200 mM, whereas skeletal muscle cells incubated in concentrations of 150 mM and 300 mM NaCl contained densely clumped myofibrils similar in morphology to muscle cells damaged by ACL myotoxin in vivo. Treatments of 300 mM KCl did not produce densely clumped myofibrils in muscle cells. These results suggest that an influx of Na+, possibly through disrupted regions of sarcolemma, be may primarily responsible for the pathological changes, including clumped myofibrils, induced by ACL myotoxin in vivo. However, an influx of extracellular Ca2+ which has been proposed to produce densely clumped myofibrils in muscle cells damaged by other snake venom myotoxins, may not be responsible for this pathological change since extracellular Ca2+ concentrations much higher than physiological levels did not produce this change in skeletal muscle cells in vitro.  相似文献   

18.
The structure of the caudal muscle in the tadpole larva of the compound ascidian Distaplia occidentalis has been investigated with light and electron microscopy. The two muscle bands are composed of about 1500 flattened cells arranged in longitudinal rows between the epidermis and the notochord. The muscle cells are mononucleate and contain numerous mitochondria, a small Golgi apparatus, lysosomes, proteid-yolk inclusions, and large amounts of glycogen. The myofibrils and sarcoplasmic reticulum are confined to the peripheral sarcoplasm. Myofibrils are discrete along most of their length but branch near the tapered ends of the muscle cell, producing a Felderstruktur. The myofibrils originate and terminate at specialized intercellular junctional complexes. These myomuscular junctions are normal to the primary axes of the myofibrils and resemble the intercalated disks of vertebrate cardiac muscle. The myofibrils insert at the myomuscular junction near the level of a Z-line. Thin filaments (presumably actin) extend from the terminal Z-line and make contact with the sarcolemma. These thin filaments frequently appear to be continuous with filaments in the extracellular junctional space, but other evidence suggests that the extracellular filaments are not myofilaments. A T-system is absent, but numerous peripheral couplings between the sarcolemma and cisternae of the sarcoplasmic reticulum (SR) are present on all cell surfaces. Cisternae coupled to the sarcolemma are continuous with transverse components of SR which encircle the myofibrils at each I-band and H-band. The transverse component over the I-band consists of anastomosing tubules applied as a single layer to the surface of the myofibril. The transverse component over the H-band is also composed of anastomosing tubules, but the myofibrils are invested by a double or triple layer. Two or three tubules of sarcoplasmic reticulum interconnect consecutive transverse components. Each muscle band is surrounded by a thin external lamina. The external lamina does not parallel the irregular cell contours nor does it penetrate the extracellular space between cells. In contracted muscle, the sarcolemmata at the epidermal and notochordal boundaries indent to the level of each Z-line, and peripheral couplings are located at the base of the indentations. The external lamina and basal lamina of the epidermis are displaced toward the indentations. The location, function, and neuromuscular junctions of larval ascidian caudal muscle are similar to vertebrate somatic striated muscle. Other attributes, including the mononucleate condition, transverse myomuscular junctions, prolific gap junctions, active Golgi apparatus, and incomplete nervous innervation are characteristic of vertebrate cardiac muscle cells.  相似文献   

19.
Nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells are located in the bulge area of the follicle. Previous studies have shown that HAP stem cells can differentiate to neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. HAP stem cells effected nerve and spinal cord regeneration in mouse models. Recently, we demonstrated that HAP stem cells differentiated to beating cardiac muscle cells. The differentiation potential to cardiac muscle cells was greatest in the upper part of the follicle. The beat rate of the cardiac muscle cells was stimulated by isoproterenol. In the present study, we observed that isoproterenol directs HAP stem cells to differentiate to cardiac muscle cells in large numbers in culture compared to HAP stem cells not supplemented with isoproterenol. The addition of activin A, bone morphogenetic protein 4, and basic fibroblast growth factor, along with isoproternal, induced the cardiac muscle cells to form tissue sheets of beating heart muscle cells. These results demonstrate that HAP stem cells have great potential to form beating cardiac muscle cells in tissue sheets.  相似文献   

20.
The degree to which developmentally related alterations in cardiac creatine kinase (CK) activity reflect modification of CK isoenzyme gene expression remains uncertain. The present studies addressed this question by assessing multiple aspects of CK in rat heart during the perinatal to adult transition. In addition to whole tissue, isolated and purified muscle and nonmuscle cells were studied, as well as myofibrillar, mitochondrial, and cytosolic subcellular fractions. Whole homogenate CK enzyme specific activity nearly doubled during the weanling to adult developmental period. Muscle cell CK activity increased by a similar magnitude. Nonmuscle cell activity decreased. In the adult heart, both myofibrillar and mitochondrial CK activities were augmented versus the weanling heart. The cytoplasmic fraction activity held constant during development. Electrophoretic isoenzyme analyses of both weanling and adult cardiac muscle cells indicated the presence of mitochondrial CK and MM-CK isoforms. Weanling heart nonmuscle cells contained mitochondrial, MM, MB, and BB isoforms; however, BB isoform was not detected in the adult heart nonmuscle cells. Arrhenius plots provided information regarding heart muscle and nonmuscle cell alterations during development. CK activation energies were also determined for whole tissue, muscle/nonmuscle cells, myofibrils, mitochondria, and cytosol. Results demonstrate that heterogeneous muscle/nonmuscle cellular composition and differential myofibrillar/mitochondrial subcellular composition account for normal, developmentally related changes in heart CK enzyme activity. CK isoenzyme gene expression changes were not detected in cardiac muscle cells, and transition of CK-B to CK-M gene expression is limited to nonmuscle cells during normal, weanling to adult development in the rat heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号