首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In wild-type strains of Escherichia coli K-12, the rate of thiomethylgalactoside (TMG)-induced beta-galactosidase synthesis is decreased in the presence of galactose or glucose. A spontaneous mutant of a K-12 strain, 58-161, which synthesizes beta-galactosidase at a low rate was isolated. In this mutant, galactose, after a lag of about one generation time, evoked the same final differential rate of enzyme synthesis as did the gratuitous inducer TMG. However, constitutive, TMG-induced and galactose-induced synthesis in the mutant were subject to inhibition by exogenous glucose. It is concluded that repression of beta-galactosidase synthesis derived from glucose is distinct from the inhibition derived from galactose.  相似文献   

2.
Role of lac genes in induction of beta-galactosidase synthesis by galactose   总被引:1,自引:1,他引:0  
Strain BL1003, a lacO mutant, synthesizes beta-galactosidase constitutively at a low rate. The enzyme is further inducible by d-galactose to the same differential rate as is seen in the presence of an optimal concentration of thiomethylgalactoside. lacY Mutants derived from strain BL1003 are not inducible by galactose, although they synthesize beta-galactosidase at the low constitutive rate characteristic of the parent. Galactose is a weak inducer of beta-galactosidase synthesis in wild-type Escherichia coli K-12, but it is more effective when the wild type has been preinduced with isopropyl-beta-d-thiogalactoside. Nevertheless, the rise in the differential rate of synthesis in response to galactose in a preinduced wild-type culture is much lower than in strain BL1003. Thus, two factors are involved in the induction of strain BL1003 by galactose: the mutant operator and the constitutive permease. The operator has an altered sensitivity to the i product-galactose complex. The low constitutive level of permease enabled the cells, at the high concentrations of galactose used (5 x 10(-2)m), to maintain a sufficient internal concentration for further induction.  相似文献   

3.
A 14-bp segment in the promoter region of the tdcABC operon of Escherichia coli shows sequence identity with the consensus binding site for the E. coli integration host factor (IHF). In an himA (IHF-deficient) strain, expression of beta-galactosidase from a tdcB'-'lacZ protein fusion plasmid was about 10% of that seen with an isogenic himA+ strain. Threonine dehydratase activity from the chromosomal tdcB gene in the himA mutant was also about 10% of the wild-type enzyme level. Two different mutations introduced into the putative IHF-binding site in the fusion plasmid greatly reduced the plasmid-coded beta-galactosidase activity in cells containing IHF. In vitro gel retardation and DNase I footprinting analyses showed binding of purified IHF to the wild-type but not to the mutant promoter. IHF protected a 31-bp region between -118 and -88 encompassing the conserved IHF consensus sequence. These results suggest that efficient expression of the tdc operon in vivo requires a functional IHF and an IHF-binding site in the tdc promoter.  相似文献   

4.
The genes coding for histidine decarboxylase from a wild-type strain and an autoactivation mutant strain of Lactobacillus 30a have been cloned and expressed in Escherichia coli. The mutant protein, G58D, has a single Asp for Gly substitution at position 58. The cloned genes were placed under control of the beta-galactosidase promoter and the products are natural length, not fusion proteins. The enzyme kinetics of the proteins isolated from E. coli are comparable to those isolated from Lactobacillus 30a. At pH 4.8 the Km of wild-type enzyme is 0.4 mM and the kcat = 2800 min-1; the corresponding values for G58D are 0.5 mM and 2750 min-1. The wild-type and G58D have autoactivation half-times of 21 and 9 h respectively under pseudophysiological conditions of 150 mM K+ and pH 7.0. At pH 7.6 and 0.8 M K+ the half-times are 4.9 and 2.9 h. The relatively slow rate of autoactivation for purified protein and the differences in cellular and non-cellular activation rates, coupled with the fact that wild-type protein is readily activated in wild-type Lactobacillus 30a but poorly activated in E. coli, suggest that wild-type Lactobacillus 30a contains a factor, possibly an enzyme, that enhances the activation rate.  相似文献   

5.
The ebg beta-galactosidase of Escherichia coli K-12 strain LC110 has been purified and characterized. Strain LC110 is a Lac+ revertant of a mutant with a deletion of the lacZ beta-galactosidase gene. Its new ebg beta-galactosidase activity was shown to be due to a discrete protein, immunologically unrelated to lacZ beta-galactosidase. Its kinetics of action conformed to those of a simple conventional enzyme. With o-nitrophenyl-beta-D-galactoside as substrate, the Vmax was 11,200 nmol/min per mg of enzyme, the Km was 5 mM, and the activation energy was 12,400 cal/mol. Corresponding values for lacZ beta-galactosidase of wild-type E. coli K-12 were 350,000 nmol/min per mg of enzyme, 1.3 mM, and 8,000 cal/mol. A series of sugars has been examined as competitive inhibitors of ebg beta-galactosidase. Kinetic analyses suggest that ebg beta-galactosidase has a particularly high affinity for galactosamine and gamma-galactonolactone, binds galatose more tightly than lactose, and shows a general preference for monosaccharides rather than beta-galactosides. We conclude that the ebg beta-galactosidase may have arisen by modification of a gene involved with the metabolism of a monosaccharide, possibly a 2-amino sugar.  相似文献   

6.
A comparison of the specific activity of wild-type beta-galactosidase synthesized in a lacZ(-)/lacZ(+) heterogenote has shown that there is 60% more activity in the heterogenote's enzyme than can be accounted for by wild-type subunits alone. It is concluded that wild type beta-galactosidase subunits can complement mutant subunits.  相似文献   

7.
An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization.  相似文献   

8.
An Aspergillus niger mutant strain, VTT-D-80144, with an improvement of three- to fourfold in the production of extracellular beta-galactosidase was isolated after mutagenesis. The production of beta-galactosidase by this mutant was unaffected by fermentor size, and the enzyme was also suitable for immobilization.  相似文献   

9.
In gram-positive bacteria, HPr, a phosphocarrier protein of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), is phosphorylated by an ATP-dependent, metabolite-activated protein kinase on seryl residue 46. In a Bacillus subtilis mutant strain in which Ser-46 of HPr was replaced with a nonphosphorylatable alanyl residue (ptsH1 mutation), synthesis of gluconate kinase, glucitol dehydrogenase, mannitol-1-P dehydrogenase and the mannitol-specific PTS permease was completely relieved from repression by glucose, fructose, or mannitol, whereas synthesis of inositol dehydrogenase was partially relieved from catabolite repression and synthesis of alpha-glucosidase and glycerol kinase was still subject to catabolite repression. When the S46A mutation in HPr was reverted to give S46 wild-type HPr, expression of gluconate kinase and glucitol dehydrogenase regained full sensitivity to repression by PTS sugars. These results suggest that phosphorylation of HPr at Ser-46 is directly or indirectly involved in catabolite repression. A strain deleted for the ptsGHI genes was transformed with plasmids expressing either the wild-type ptsH gene or various S46 mutant ptsH genes (S46A or S46D). Expression of the gene encoding S46D HPr, having a structure similar to that of P-ser-HPr according to nuclear magnetic resonance data, caused significant reduction of gluconate kinase activity, whereas expression of the genes encoding wild-type or S46A HPr had no effect on this enzyme activity. When the promoterless lacZ gene was put under the control of the gnt promoter and was subsequently incorporated into the amyE gene on the B. subtilis chromosome, expression of beta-galactosidase was inducible by gluconate and repressed by glucose. However, we observed no repression of beta-galactosidase activity in a strain carrying the ptsH1 mutation. Additionally, we investigated a ccpA mutant strain and observed that all of the enzymes which we found to be relieved from carbon catabolite repression in the ptsH1 mutant strain were also insensitive to catabolite repression in the ccpA mutant. Enzymes that were repressed in the ptsH1 mutant were also repressed in the ccpA mutant.  相似文献   

10.
11.
12.
Catalytic rate is proposed as an infrared spectrographic index. Initial investigations of catalytic activity, on beta-galactosidase show a 1-2 fold increase in rate for a mutant enzyme when exposed to 10.6 micrometer irradiation at 2%. No increase was obtained for the wild-type enzyme.  相似文献   

13.
By transposon Tn917 mutagenesis, 16 mutants of Staphylococcus xylosus were isolated that showed higher levels of beta-galactosidase activity in the presence of glucose than the wild-type strain. The transposons were found to reside in three adjacent locations in the genome of S. xylosus. The nucleotide sequence of the chromosomal fragment affected by the Tn917 insertions yielded an open reading frame encoding a protein with a size of 328 amino acids with a high level of similarity to glucose kinase from Streptomyces coelicolor. Weaker similarity was also found to bacterial fructokinases and xylose repressors of gram-positive bacteria. The gene was designated glkA. Immediately downstream of glkA, two open reading frames were present whose deduced gene products showed no obvious similarity to known proteins. Measurements of catabolic enzyme activities in the mutant strains grown in the presence or absence of sugars established the pleiotropic nature of the mutations. Besides beta-galactosidase activity, which had been used to detect the mutants, six other tested enzymes were partially relieved from repression by glucose. Reduction of fructose-mediated catabolite repression was observed for some of the enzyme activities. Glucose transport and ATP-dependent phosphorylation of HPr, the phosphocarrier of the phosphoenolpyruvate:carbohydrate phosphotransferase system involved in catabolite repression in gram-positive bacteria, were not affected. The cloned glkA gene fully restored catabolite repression in the mutant strains in trans. Loss of GlkA function is thus responsible for the partial relief from catabolite repression. Glucose kinase activity in the mutants reached about 75% of the wild-type level, indicating the presence of another enzyme in S. xylosus. However, the cloned gene complemented an Escherichia coli strain in glucose kinase. Therefore, the glkA gene encodes a glucose kinase that participates in catabolite repression in S. xylosus.  相似文献   

14.
In vivo 31P nuclear magnetic resonance analysis of Escherichia coli cells showed that the intracellular concentration of P(i) remained constant in wild-type and in a glpT mutant strain whether the cells were grown on excess (2 mM) P(i) or sn-glycerol-3-phosphate as a phosphate source. The function of the phoA promoter (measured by beta-galactosidase activity in a phoA-lacZ fusion strain) was repressed when glpT+ cells were utilizing sn-glycerol-3-phosphate as the sole source of phosphate. These cells were devoid of alkaline phosphatase activity. However, the phoA promoter was fully active in a glpT mutant. These results indicated that the repression of the enzyme synthesis was not due to a variation in the level of cytoplasmic P(i) but was due to the P(i) excreted into the periplasm and/or to the medium.  相似文献   

15.
Expression of the Bacillus thuringiensis cryIIIA gene encoding a Coleoptera-specific toxin is weak during vegetative growth and is activated at the onset of the stationary phase. cryIIIA'-'lacZ fusions and primer extension analysis show that the regulation of cryIIIA expression is similar in Bacillus subtilis and in B. thuringiensis. Activation of cryIIIA expression was not altered in B. subtilis mutant strains deficient for the sigma H and sigma E sporulation-specific sigma factors or for minor sigma factors such as sigma B, sigma D, or sigma L. This result and the nucleotide sequence of the -35 and -10 regions of the cryIIIA promoter suggest that cryIIIA expression might be directed by the E sigma A form of RNA polymerase. Expression of the cryIIIA'-'lacZ fusion is shut off after t2 (2 h after time zero) of sporulation in the B. subtilis wild-type strain grown on nutrient broth sporulation medium. However, no decrease in cryIIIA-directed beta-galactosidase activity occurred in sigma H, kinA, or spo0A mutant strains. Moreover, beta-galactosidase activity was higher and remained elevated after t2 in the spo0A mutant strain. beta-Galactosidase activity was weak in abrB and spo0A abrB mutant strains, suggesting that AbrB is responsible for the higher level of cryIIIA expression observed in a spo0A mutant. However, both in spo0A and spo0A abrB mutant strains, beta-galactosidase activity remained elevated after t2, suggesting that even in the absence of AbrB, cryIIIA expression is controlled through modulation of the phosphorylated form of Spo0A. When the cryIIIA gene is expressed in a B. subtilis spo0A mutant strain or in the 168 wild-type strain, large amounts of toxins are produced and accumulate to form a flat rectangular crystal characteristic of the coleopteran-specific B. thuringiensis strains.  相似文献   

16.
The temperature-sensitive Bacillus subtilis tms-26 mutant strain was characterized biochemically and shown to be defective in N-acetylglucosamine 1-phosphate uridyltransferase activity. At the permissive temperature (34 degrees C), the mutant strain contained about 15% of the wild-type activity of this enzyme, whereas at the nonpermissive temperature (48 degrees C), the mutant enzyme was barely detectable. Furthermore, the N-acetylglucosamine 1-phosphate uridyltransferase activity of the tms-26 mutant strain was much more heat labile in vitro than that of the wild-type strain. The level of N-acetylglucosamine 1-phosphate, the substrate of the uridyltransferase activity, was elevated more than 40-fold in the mutant strain at the permissive temperature compared with the level in the wild-type strain. During a temperature shift, the level of UDP-N-acetylglucosamine, the product of the uridyltransferase activity, decreased much more in the mutant strain than in the wild-type strain. An Escherichia coli strain harboring the wild-type version of the tms-26 allele on a plasmid contained increased N-acetylglucosamine 1-phosphate uridyltransferase activity compared with that in the haploid strain. It is suggested that the gene for N-acetylglucosamine 1-phosphate uridyltransferase in B. subtilis be designated gcaD.  相似文献   

17.
Acetohydroxy acid synthetase, which is sensitive to catabolite repression in wild-type Escherichia coli B, was relatively resistant to this control in a streptomycin-dependent mutant. The streptomycin-dependent mutant was found to be inducible for beta-galactosidase in the presence of glucose, although repression of beta-galactosidase by glucose occurred under experimental conditions where growth of the streptomycin-dependent mutant was limited. Additional glucose-sensitive enzymes of wild-type E. coli B (citrate synthase, fumarase, aconitase and isocitrate dehydrogenase) were found to be insensitive to the carbon source in streptomycin-dependent mutants: these enzymes were formed by streptomycin-dependent E. coli B in equivalent quantities when either glucose or glycerol was the carbon source. Two enzymes, glucokinase and glucose 6-phosphate dehydrogenase, that are glucose-insensitive in wild-type E. coli B were formed in equivalent quantity on glucose or glycerol in both streptomycin-sensitive and streptomycin-dependent E. coli B. The results indicate a general decrease or relaxation of catabolite repression in the streptomycin-dependent mutant. The yield of streptomycin-dependent cells from glucose was one-third less than that of the streptomycin-sensitive strain. We conclude that the decreased efficiency of glucose utilization in streptomycin-dependent E. coli B is responsible for the relaxation of catabolite repression in this mutant.  相似文献   

18.
Klebsiella strain RE1755A is a Lac- Gal- mutant which has lost both of its lac operons, but possesses a gene specifying beta-galactosidase III, an enzyme which hydrolyzes o-nitrophenyl-beta-D-galactopyranoside but does not hydrolyze lactose. Selective pressure was applied to isolate mutants able to utilize lactose. The lactose-utilizing mutants obtained were shown to possess an unaltered beta-galactosidase III. Lactose utilization was shown to result from a pleiotropic mutation which also (i) permits galactose utilization and (ii) prevents induction of beta-galactosidase III synthesis by lactose. Evidence is presented suggesting that a phospho-beta-galactosidase enzyme is involved in lactose metabolism.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号