首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Golgi-membrane vesicles present in particulate preparations of lactating rat mammary gland were biosynthetically loaded with [14C]lactose. This lactose was effectively retained by particles sedimented after exposure to 0.25 M-disaccharide, but was partly lost after exposure to 0.25 M-glucose or other solutes of similar size. Loss of lactose was time-, concentration- and temperature-dependent and varied with the solute structure. This behaviour is ascribed to the presence of protein in the Golgi membrane, forming a specific carrier or channel that serves to supply glucose for lactose synthesis.  相似文献   

3.
1. UDP-galactose utilization by isolated Golgi vesicles or rat mammary gland synthesizing lactose causes accumulation of UMP but not UDP, although UDP is the immediate product of lactose synthase (EC 2.4.1.22). 2. This can be ascribed to a nucleoside diphosphatase (EC 3.6.1.6), specific for UDP, GDP and IDP, activated by bivalent metal ions and apparently located on the luminal face of the Golgi membrane. 3. The uridine diphosphatase activity exceeds the total galactosyltransferase activity 5-fold, and is estimated to maintain UDP at about 14 micrometer within the Golgi lumen. 4. Evidence is given that UMP, but not UDP, penetrates the membrane and that UMP is rephosphorylated to UDP by a UMP kinase located in the cytosol. 5. Golgi-cytosol relationships with respect to lactose synthesis are formulated in terms of a uridine nucleotide cycle which throws new light on the energy cost and possible regulation of lactose synthesis.  相似文献   

4.
Facilitated diffusion of [14C]lactose into inverted membrane vesicles of Escherichia coli was measured using HgCl2 as a stopping reagent and polylysine to flocculate the vesicles for filtration. Equilibration of lactose between the internal and external volumes required expression of the y gene of the lac operon and was inhibited by thiodigalactoside or by prior incubation with N-ethylmaleimde or HgCl2. The initial rate of uptake was saturable, with a Kt of 0.95 mM. Counterflow of [14C]lactose was demonstrated in either direction. ATP hydrolysis or respiration drove the efflux of internal lactose. The effect of ATP required addition of F1 coupling factor (ATPase) from E. coli when lactose transport was studied in F1-deficient inverted vesicles. Accumulation of lactose against a concentration gradient was achieved by forming an artificial electrochemical proton gradient consisting of a membrane potential negative inside or a pH gradient basic inside. Addition of ATP inhibited this proton driven uptake showing that it occurred in inverted vesicles. It was concluded that the lactose-proton co-transport protein (M protein) is qualitatively symmetrical with respect to the facilitated diffusion of lactose and the coupling of proton and lactose transport.  相似文献   

5.
The inhibition of lactose synthesis by UDP-glucose, UDP-glucuronate and, less so, by UDP-N-acetylglucosamine was markedly smaller in preparations of "intact" than of lysed vesicles derived from the Golgi apparatus of lactating rat mammary gland. This constitutes evidence for a specific, probably facilitated, transport of UDP-galactose across the Golgi membrane.  相似文献   

6.
Cytoplasmic membrane vesicles with either normal or inverted orientation were prepared from Escherichia coli. The lactose transport activity of these vesicle preparations was compared. The parameters measured were net efflux, counterflux, and K+/valinomycin-induced active uptake of lactose. With membrane vesicles derived from both wild-type and cytochrome-deficient strains the right-side-out and inverted membrane preparations showed similar rates of lactose flux in all assays. According to these criteria, the activity of the beta-galactoside transport protein is inherently symmetrical. One major difference was observed between the native and inverted vesicle preparations: the inverted vesicles had approximately twice the specific activity of native vesicles in the counterflux and K+/valinomycin-induced uptake assays. This difference can be largely ascribed to the presence in the normal vesicle preparation of vesicles with a high passive permeability to lactose. Such vesicles are apparently absent from the inverted vesicle preparations.  相似文献   

7.
1. Purified Golgi-membrane vesicles of lactating-rat mammary gland were penetrated by glucose. 3-O-methylglucose, mannose, fructose, sorbitol and mannitol, but not by lactose or sucrose. 2. The kinetics of mannitol uptake and release were followed at 2-6 degrees C with the aid of fine filters (0.45 micrometers pore size) to separate the vesicles from the medium. 3. Mannitol efflux exhibited apparent first-order kinetics with k approximately 1 min-1. Neither saturability, nor inhibition by excess sorbitol or glucose, could be observed. 4. Mannitol efflux at 18 degrees C was about seven times faster than at 1 degrees C, and rates at higher temperatures were too fast to be measured. The rate of glucose efflux at 2-6 degrees C exceeded that of mannitol severalfold. 5. These findings imply a channel or carrier of definite, but limited, specificity straddling the Golgi membrane and able to supply glucose for lactose synthesis.  相似文献   

8.
L Patel  M L Garcia  H R Kaback 《Biochemistry》1982,21(23):5805-5810
Addition of lactose to Escherichia coli ML 308-225 membrane vesicles under nonenergized conditions induces transient alkalinization of the medium, and the initial rate of proton influx is stimulated by valinomycin and abolished by nigericin or carbonyl cyanide m-chlorophenylhydrazone. A functional lac y gene product is absolutely required as the effect is not observed in ML 308-225 vesicles treated with N-ethylmaleimide nor with vesicles from uninduced Escherichia coli ML 30. Furthermore, the magnitude of the phenomenon is enhanced about 3-fold in vesicles from Escherichia coli T206, which contain amplified levels of the lac carrier protein. Kinetic parameters for lactose-induced proton influx are the same as those determined for lactose-facilitated diffusion, and quantitative comparison of the initial rates of the two fluxes indicates that the stoichiometry between protons and lactose is 1:1. Treatment of ML 308-225 vesicles with diethyl pyrocarbonate causes inactivation of lactose-induced proton influx. Remarkably, however, treatment with the histidine reagent enhances the rate of lactose-facilitated diffusion in a manner suggesting that the altered lac carrier catalyzes lactose influx without the symport of protons. The results are consistent with the hypothesis that acylation of a histidyl residue(s) in the lac carrier protein dissociates lactose influx from proton influx and indicate that this residue(s) play(s) an important role in the pathway of proton translocation.  相似文献   

9.
Cytoplasmic membrane vesicles with either normal or inverted orientation were prepared from Escherichia coli. The lactose transport activity of these vesicle preparations was compared. The parameters measured were net efflux, counterflux, and K+/valinomycin-induced active uptake of lactose. With membrane vesicles derived from both wild-type and cytochrome-deficient strains the right-side-out and inverted membrane preparations showed similar rates of lactose flux in all assays. According to these criteria, the activity of the β-galactoside transport protein is inherently symmetrical.One major difference was observed between the native and inverted vesicle preparations: the inverted vesicles had approximately twice the specific activity of native vesicles in the counterflux and K+/valinomycin-induced uptake assays. This difference can be largely ascribed to the presence in the normal vesicle preparation of vesicles with a high passive permeability to lactose. Such vesicles are apparently absent from the inverted vesicle preparations.  相似文献   

10.
The accompanying articles (Saffen, D.W., Presper, K.A., Doering, T.L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253; Mitchell, W.J., Saffen, D. W., and Roseman, S. (1987) J. Biol. Chem. 262, 16254-16260) show that "inducer exclusion" in intact cells of Escherichia coli is regulated by IIIGlc, a protein encoded by the crr gene of the phosphoenolpyruvate:glycose phosphotransferase system (PTS). The present studies attempt to show a direct effect of IIIGlc on non-PTS transport systems. Inner membrane vesicles prepared from a wild type strain of Salmonella typhimurium (pts+), carrying the E. coli lactose operon on an episome, showed respiration-dependent accumulation of methyl-beta-D-thiogalactopyranoside (TMG) via the lactose permease. In the presence of methyl-alpha-D-glucopyranoside or other PTS sugars, TMG uptake was reduced by an amount which was dependent on the relative concentrations of IIIGlc and lactose permease in the vesicles. The endogenous IIIGlc concentration in these vesicles was in the range 5-10 microM, similar to that found in whole cells. Methyl-alpha-glucoside had no effect on lactose permease activity in vesicles prepared from a deletion mutant strain lacking the soluble PTS proteins Enzyme I, HPr, and IIIGlc. One or more of the pure proteins could be inserted into the mutant vesicles; when one of the two electrophoretically distinguishable forms of the phosphocarrier protein, IIIGlc Slow, was inserted, both the initial rate and steady state level of TMG accumulation were reduced by up to 40%. The second electrophoretic form, IIIGlc Fast, had much less effect. A direct relationship was observed between the intravesicular concentration of IIIGlc Slow and the extent of inhibition of the lactose permease. No inhibition was observed when IIIGlc Slow was added to the outside of the vesicles, indicating that the site of interaction with the lactose permease is accessible only from the inner face of the membrane. In addition to the lactose permease, IIIGlc Slow was found to inhibit both the galactose and the melibiose permeases. Uptake of proline, on the other hand, was unaffected. The results are therefore consistent with an hypothesis that dephosphorylated IIIGlc Slow is an inhibitor of certain non-PTS permeases.  相似文献   

11.
Millimolar concentrations of manganese are required for maximal activation of purified galactosyltransferase (lactose synthase, EC 2.4.1.22), the enzyme that catalyzes addition of galactosyl groups to proteins and, in lactose synthesis, to glucose. To examine manganese activation of this enzyme under in vivo conditions, we studied intact, partially purified Golgi membranes from mouse mammary glands. In intact vesicles treated with the divalent cation ionophore, A23187, activation followed Michaelis-Menton kinetics with a Km of 3 microM; maximal activation was achieved below 10 microM manganese. In both detergent-solubilized and leaky vesicles the kinetics of manganese activation were consistent with the presence of two manganese-binding sites with dissociation constants about 40 microM and 20 mM. The difference is consistent with the presence in intact vesicles of an endogenous activator too large to traverse the membrane via A23187; this activator could bind to the low affinity manganese site allowing manganese or another divalent cation such as zinc to activate the enzyme at micromolar concentrations. The Km for UDP-galactose was found to be similar in the vesicular and solubilized preparations at micromolar and millimolar manganese concentrations, respectively, providing additional evidence for this hypothesis.  相似文献   

12.
Short-term administration of the glucose analog 5-thio- -glucose to primiparous lactating rats reduced mammary tissue lactose concentrations to half of control levels. Treatment with colchicine alone caused slight reductions in mammary tissue lactose content. These treatments did not alter the morphology or degree of development of rough endoplasmic reticulum or Golgi apparatus, but did cause alterations in secretory vesicles. In mammary tissue from untreated lactating animals, large, swollen secretory vesicles were abundant in apical regions of epithelial cells. After thioglucose administration secretory vesicles in the apical cytoplasm were smaller and were more densely packed with contents. While administration of colchicine alone caused accumulation of large numbers of nearly fully swollen vesicles, treatment with both colchicine and thioglucose induced accumulation of smaller, less fully developed secretory vesicles which contained morphologically recognizable casein micelles. Mammary tissue from late gestation rats was low in lactose; vesicles in this tissue resembled secretory vesicles in tissue from rats treated with thioglucose in that they were small and densely packed. These observations suggest that lactose, an osmoregulator in mammary gland, is transferred from Golgi apparatus to the apical cell surface within secretory vesicles. Lactose appears to be important for secretory vesicle maturation in mammary epithelial cells.  相似文献   

13.
The role of the (Na+, K+)-ATPase system in lactose production by the lactating guinea pig mammary gland has been studied in vitro with slices of the gland. In this system there is an initial fast lactose release, mainly representing secretion of preformed lactose, followed by a continuous slow lactose release, representing mainly lactose synthesis. The latter process occurs at a rate of 1.6 to 2.4 g lactose/kg wet wr/h, which value is about half of the lactose production in vivo (3.9 g/kg set wt/h). Incubation of slices in the presence of 10-4 M ouabain does not influence the rate of overall lactose production. When determined separately, it does not change either the rate of secretion or that of synthesis. This pleads against a role of the (Na+, K+)-ATPase system in lactose secretion or synthesis, in particular it seems to rule out control of the rates of these processes by the intracellular potassium concentration. An explanation for the generally observed correlation between the lactose and potassium concentrations in milk, may be that both the maintenance of the intracellular potassium concentration and the lactose synthesis rate require the presence of ATP.  相似文献   

14.
Regulation of lactose uptake by the phosphoenolpyruvate-sugar phosphotransferase system (PTS) has been demonstrated in membrane vesicles of Escherichia coli strain ML308-225. Substrates of the phosphotransferase system inhibited D-lactate energized uptake of lactose but did not inhibit uptake of either L-alanine or L-proline. This inhibition was reversed by intravesicular (but not extravesicular) phosphoenolpyruvate. Lactose uptake was also inhibited by enzyme IIIglc preparations that were shocked into the vesicles, and this inhibition was reversed by phosphoenolpyruvate. Intravesicular HPr and enzyme I stimulated methyl α-glucoside uptake but did not inhibit or stimulate lactose accumulation. Vesicles maintained at 0°C for several days partially lost 1) the ability to take up lactose, 2) the ability to accumulate PTS substrates, and 3) PTS-mediated regulation. Phosphoenolpyruvate addition restored all of these activities. These results support a mechanism in which the relative proportions of phosphorylated and nonphosphorylated forms of a phosphotransferase constituent regulate the activity of the lactose permcase.  相似文献   

15.
The onset of the prolactin (PRL) stimulation of lactose synthesis is between 4 and 8 hr after adding PRL to cultured mouse mammary tissues. The synthesis of lactose is catalyzed by the enzyme lactose synthetase, which is composed of two parts, alpha-lactalbumin and galactosyl transferase. In time-sequence studies, it was found that the activity of galactosyl transferase is enhanced by PRL in concert with the onset of the PRL stimulation of lactose synthesis. In contrast, the earliest detectable effect of PRL on alpha-lactalbumin activity occurred 24 hr after adding PRL to the cultures. It is, therefore, apparent that the rate-limiting component for the PRL stimulation of lactose synthesis in cultured mouse mammary tissues is galactosyl transferase activity.  相似文献   

16.
The role of the (Na+, K+)-ATPase system in lactose production by the lactating guinea pig mammary gland has been studied in vitro with slices of the gland. In this system there is an initial fast lactose release, mainly representing secretion of preformed lactose, followed by a continuous slow lactose release, representing mainly lactose synthesis. The latter process occurs at a rate of 1.6 to 2.4 g lactose/kg wet wt/h, which value is about half of the lactose production in vivo (3.9 g/kg wet wt/h).Incubation of slices in the presence of 10−4 M ouabain does not influence the rate of overall lactose production. When determined separately, it does not change either the rate of secretion or that of synthesis. This pleads against a role of the (Na+, K+)-ATPase system in lactose secretion or synthesis, in particular it seems to rule out control of the rates of these processes by the intracellular potassium concentration. An explanation for the generally observed correlation between the lactose and potassium concentrations in milk, may be that both the maintenance of the intracellular potassium concentration and the lactose synthesis rate require the presence of ATP.  相似文献   

17.
By subjecting the lac y gene of Escherichia coli to oligonucleotide-directed, site-specific mutagenesis, Cys148 in the lac permease has been replaced with a Gly residue [Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S., & Kaback, H. R. (1984) Biochem. Biophys. Res. Commun. 119, 860]. Recombinant plasmids bearing wild-type or mutated lac y were constructed and used to transform E. coli T184. Steady-state levels of lactose accumulation, the apparent Km for lactose under energized conditions, and the KD for p-nitrophenyl alpha-D-galactopyranoside are comparable in right-side-out vesicles containing wild-type or mutant permease. In contrast, the Vmax for lactose transport in vesicles containing mutant permease is significantly decreased. Although antibody binding studies reveal that vesicles from the mutant contain almost as much permease as wild-type vesicles, surprisingly only about one-fourth of the altered molecules bind p-nitrophenyl alpha-D-galactopyranoside with high affinity. Mutant permease is less sensitive to inactivation by N-ethylmaleimide, although the alkylating agent is still capable of completely inhibiting transport activity. Importantly, beta-galactosyl 1-thio-beta-D-galactopyranoside affords complete protection of wild-type permease against N-ethylmaleimide but has no protective effect whatsoever in the mutant. The rate of inactivation of wild-type and mutant permeases by N-ethylmaleimide is increased at alkaline pH and by the presence of a proton electrochemical gradient (interior negative and alkaline), and these phenomena are exaggerated in vesicles containing mutant permease. Finally, p-(chloromercuri)benzenesulfonate, which completely displaces bound p-nitrophenyl alpha-D-galactopyranoside from wild-type permease, does not affect binding in the mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Correlative secretion of protein, lactose and K + in milk of the goat   总被引:2,自引:0,他引:2  
Rates of secretion of milk constituents (fat, protein, lactose, Na+ and K+) in the lactating goat were measured under normal circumstances and after injections of ouabain. In all experiments a close association was noted in the secretion rates for protein, lactose and K+. Under the influence of ouabain, the concentration of Na+ in the milk tended to rise and that of K+ to fall. The rate of milk fat secretion varied independently from the rates for the other constituents. It is reasonably assumed that the principal mechanism of milk protein secretion is by emptying of Golgi vesicles through the plasma membrane. The close correlation in rates for protein, lactose and K+ supports the contention that all three are assembled in Golgi vesicles and secreted by the same mechanism.  相似文献   

19.
The energetics of D-lactate-driven active transport of lactose in right-side-out Escherichia coli membrane vesicles has been investigated with a microcalorimetric method. Changes of enthalpy (delta Hox), free energy (delta Gox), and entropy (delta Sox) during the D-lactate oxidation reaction in the presence of membrane vesicles are -39.9 kcal, -46.4 kcal, and 22 cal/deg per mole of D-lactate, respectively. The free energy released by this reaction is utilized to form a proton electrochemical potential (delta-microH+) across the membrane. The higher observed heat in the D-lactate oxidation reaction in the presence of carbonylcyanide m-chlorophenylhydrazone (a proton ionophore) supports the postulate that delta-microH+ is formed across the membrane vesicles. Thermodynamic quantities for the formation of delta-microH+ are delta Hm = 14.1 kcal, delta Gm = 0.6 kcal, and delta Sm = 45 cal/deg per mole of D-lactate. The efficiency in the free energy transfer from the oxidation reaction to the formation of delta-microH+ (defined by delta Gm/delta Gox) was 2%, as compared to that in the heat transfer (defined by delta Hm/delta Hox) of 35%. The energetics of the movement of lactose in symport with proton across the membrane as a consequence of the formation of delta-microH+ are delta H1 = -19 kcal, delta G1 = -0.5 kcal, and delta S1 = -62 cal/deg per mole of lactose. No heat of reaction is contributed by lactose movement across the membrane without symport with H+.  相似文献   

20.
alpha-p-Nitrophenylgalactoside was found to be accumulated by the lactose transport-system of Escherichia coli. This fact may help to resolve the differences in the reported number of sugar binding sites of the lactose transport protein in nonenergized and energized membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号