首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework with individual-based simulations to generate novel predictions about long-term adaptation of epistatic networks. We find that relative to traits governed by independently evolving genes, adaptation with epistatic gene networks is often characterized by longer waiting times to selective sweeps, lower standing genetic variation, and larger fitness effects of adaptive mutations. This may cause epistatic networks to either adapt more slowly or more quickly relative to a nonepistatic system. Interestingly, epistatic networks may adapt faster even when epistatic effects of mutations are on average deleterious. Further, we study the evolution of epistatic properties of adaptive mutations in gene networks. Our results show that adaptive mutations with small fitness effects typically evolve positive synergistic interactions, whereas adaptive mutations with large fitness effects evolve positive synergistic and negative antagonistic interactions at approximately equal frequencies. These results provide testable predictions for adaptation of traits governed by epistatic networks and the evolution of epistasis within networks.  相似文献   

2.
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs’ deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.  相似文献   

3.
A central goal in molecular evolution is to understand how genetic interactions between protein mutations shape protein function and fitness. While intergenic epistasis has been extensively explored in eukaryotes, bacteria, and viruses, intragenic epistatic interactions have been insufficiently studied. Here, we employ a model system in which lambda phage fitness correlates with the enzymatic activity of human immunodeficiency virus type 1 (HIV-1) protease to systematically determine the epistatic interactions between intragenic pairs of deleterious protein substitutions. We generated 114 genotypes of the HIV-1 protease, each carrying pairs of nucleotide substitution mutations whose separated and combined deleterious effects on fitness were then determined. A high proportion (39%) of pairs displayed lethality. Several pairs exhibited significant interactions for fitness, including positive and negative epistasis. Significant negative epistatic interactions predominated (15%) over positive interactions (2%). However, the average ± SD epistatic effect, ē = 0.0025 ± 0.1334, was not significantly different from zero (p = 0.8368). Notably, epistatic interactions, regardless of epistatic direction, tend to be more frequent in the context of less deleterious mutations. In the present study, the high frequencies of lethality and negative epistasis indicate that the HIV-1 protease is highly sensitive to the effects of deleterious mutations. Therefore, proteins may not be as robust to mutational change as is usually expected.  相似文献   

4.
Epistasis for fitness means that the selective effect of a mutation is conditional on the genetic background in which it appears. Although epistasis is widely observed in nature, our understanding of its consequences for evolution by natural selection remains incomplete. In particular, much attention focuses only on its influence on the instantaneous rate of changes in frequency of selected alleles via epistatic contribution to the additive genetic variance for fitness. Thus, in this framework epistasis only has evolutionary importance if the interacting loci are simultaneously segregating in the population. However, the selective accessibility of mutational trajectories to high fitness genotypes may depend on the genetic background in which novel mutations appear, and this effect is independent of population polymorphism at other loci. Here we explore this second influence of epistasis on evolution by natural selection. We show that it is the consequence of a particular form of epistasis, which we designate sign epistasis. Sign epistasis means that the sign of the fitness effect of a mutation is under epistatic control; thus, such a mutation is beneficial on some genetic backgrounds and deleterious on others. Recent experimental innovations in microbial systems now permit assessment of the fitness effects of individual mutations on multiple genetic backgrounds. We review this literature and identify many examples of sign epistasis, and we suggest that the implications of these results may generalize to other organisms. These theoretical and empirical considerations imply that strong genetic constraint on the selective accessibility of trajectories to high fitness genotypes may exist and suggest specific areas of investigation for future research.  相似文献   

5.
Genetic interactions can strongly influence the fitness effects of individual mutations, yet the impact of these epistatic interactions on evolutionary dynamics remains poorly understood. Here we investigate the evolutionary role of epistasis over 50,000 generations in a well-studied laboratory evolution experiment in Escherichia coli. The extensive duration of this experiment provides a unique window into the effects of epistasis during long-term adaptation to a constant environment. Guided by analytical results in the weak-mutation limit, we develop a computational framework to assess the compatibility of a given epistatic model with the observed patterns of fitness gain and mutation accumulation through time. We find that a decelerating fitness trajectory alone provides little power to distinguish between competing models, including those that lack any direct epistatic interactions between mutations. However, when combined with the mutation trajectory, these observables place strong constraints on the set of possible models of epistasis, ruling out many existing explanations of the data. Instead, we find that the data are consistent with a “two-epoch” model of adaptation, in which an initial burst of diminishing-returns epistasis is followed by a steady accumulation of mutations under a constant distribution of fitness effects. Our results highlight the need for additional DNA sequencing of these populations, as well as for more sophisticated models of epistasis that are compatible with all of the experimental data.  相似文献   

6.
Epistatic interactions between mutations are widespread. Theoretical investigations have shown that variability in epistatic effects influences fundamental evolutionary processes, yet few empirical studies have identified causes or the extent of this variation. We examined variation in epistatic effects of mutations at two host recognition sites in phiX174 bacteriophage. We calculated epistatic effects from the sum of fitness effects (log scale) of two single mutants and their corresponding double mutant for five combinations of mutations in six conditions. We found that epistatic effects differed in sign, degree, and variability across conditions. The data highlight that even between single mutations at the same two sites the sign and variability of epistatic effects are affected by environment. We discuss these findings in the context of studying the role of epistasis in evolution.  相似文献   

7.
The evolution of multiple antibiotic resistance is an increasing global problem. Resistance mutations are known to impair fitness, and the evolution of resistance to multiple drugs depends both on their costs individually and on how they interact—epistasis. Information on the level of epistasis between antibiotic resistance mutations is of key importance to understanding epistasis amongst deleterious alleles, a key theoretical question, and to improving public health measures. Here we show that in an antibiotic-free environment the cost of multiple resistance is smaller than expected, a signature of pervasive positive epistasis among alleles that confer resistance to antibiotics. Competition assays reveal that the cost of resistance to a given antibiotic is dependent on the presence of resistance alleles for other antibiotics. Surprisingly we find that a significant fraction of resistant mutations can be beneficial in certain resistant genetic backgrounds, that some double resistances entail no measurable cost, and that some allelic combinations are hotspots for rapid compensation. These results provide additional insight as to why multi-resistant bacteria are so prevalent and reveal an extra layer of complexity on epistatic patterns previously unrecognized, since it is hidden in genome-wide studies of genetic interactions using gene knockouts.  相似文献   

8.
Models of founder events have focused on the reduction in the genetic variation following a founder event. However, recent work (Bryant et al., 1986; Goodnight, 1987) suggests that when there is epistatic genetic variance in a population, the total genetic variance within demes may actually increase following a founder event. Since the additive genetic variance is a statistical property of a population and can change with the level of inbreeding, some of the epistatic genetic variance may be converted to additive genetic variance during a founder event. The model presented here demonstrates that some of the additive-by-additive epistatic genetic variance is converted to additive genetic variance following a founder event. Furthermore, the amount of epistasis converted to additive genetic variance is a function of the recombination rate and the propagule size. For a single founder event of two individuals, as much as 75% of the epistatic variance in the ancestral population may become additive genetic variance following the founder event. For founder events involving two individuals with free recombination, the relative contribution of epistasis to the additive genetic variance following a founder event is equal to its proportion of the total genetic variance prior to the founder event. Traits closely related to fitness are expected to have relatively little additive genetic variance but may have substantial nonadditive genetic variance. Founder events may be important in the evolution of fitness traits, not because they lead to a reduction in the genetic variance, but rather because they lead to an increase in the additive genetic variance.  相似文献   

9.
Despite the accumulation of substantial quantities of information about epistatic interactions among both deleterious and beneficial mutations in a wide array of experimental systems, neither consistent patterns nor causal explanations for these interactions have yet emerged. Furthermore, the effects of mutations depend on the environment in which they are characterized, implying that the environment may also influence epistatic interactions. Recent work with beneficial mutations for the single-stranded DNA bacteriophage ID11 demonstrated that interactions between pairs of mutations could be understood by means of a simple model that assumes that mutations have additive phenotypic effects and that epistasis arises through a nonlinear phenotype–fitness map with a single intermediate optimum. To determine whether such a model could also explain changes in epistatic patterns associated with changes in environment, we measured epistatic interactions for these same mutations under conditions for which we expected to find the wild-type ID11 at different distances from its phenotypic optimum by assaying fitnesses at three different temperatures: 33°, 37°, and 41°. Epistasis was present and negative under all conditions, but became more pronounced as temperature increased. We found that the additive-phenotypes model explained these patterns as changes in the parameters of the phenotype–fitness map, but that a model that additionally allows the phenotypes to vary across temperatures performed significantly better. Our results show that ostensibly complex patterns of fitness effects and epistasis across environments can be explained by assuming a simple structure for the genotype–phenotype relationship.  相似文献   

10.
Understanding the genetic architecture of complex traits requires identification of the underlying genes and characterization of gene-by-gene and genotype-by-environment interactions. Behaviors that mediate interactions between organisms and their environment are complex traits expected to be especially sensitive to environmental conditions. Previous studies on the olfactory avoidance response of Drosophila melanogaster showed that the genetic architecture of this model behavior depends on epistatic networks of pleiotropic genes. We performed a screen of 1339 co-isogenic p[GT1]-element insertion lines to identify novel genes that contribute to odor-guided behavior and identified 55 candidate genes with known p[GT1]-element insertion sites. Characterization of the expression profiles of 10 p[GT1]-element insertion lines showed that the effects of the transposon insertions are often dependent on developmental stage and that hypomorphic mutations in developmental genes can elicit profound adult behavioral deficits. We assessed epistasis among these genes by constructing all possible double heterozygotes and measuring avoidance responses under two stimulus conditions. We observed enhancer and suppressor effects among subsets of these P-element-tagged genes, and surprisingly, epistatic interactions shifted with changes in the concentration of the olfactory stimulus. Our results show that the manifestation of epistatic networks dynamically changes with alterations in the environment.  相似文献   

11.
Lalić J  Elena SF 《Heredity》2012,109(2):71-77
How epistatic interactions between mutations determine the genetic architecture of fitness is of central importance in evolution. The study of epistasis is particularly interesting for RNA viruses because of their genomic compactness, lack of genetic redundancy, and apparent low complexity. Moreover, interactions between mutations in viral genomes determine traits such as resistance to antiviral drugs, virulence and host range. In this study we generated 53 Tobacco etch potyvirus genotypes carrying pairs of single-nucleotide substitutions and measured their separated and combined deleterious fitness effects. We found that up to 38% of pairs had significant epistasis for fitness, including both positive and negative deviations from the null hypothesis of multiplicative effects. Interestingly, the sign of epistasis was correlated with viral protein-protein interactions in a model network, being predominantly positive between linked pairs of proteins and negative between unlinked ones. Furthermore, 55% of significant interactions were cases of reciprocal sign epistasis (RSE), indicating that adaptive landscapes for RNA viruses maybe highly rugged. Finally, we found that the magnitude of epistasis correlated negatively with the average effect of mutations. Overall, our results are in good agreement to those previously reported for other viruses and further consolidate the view that positive epistasis is the norm for small and compact genomes that lack genetic robustness.  相似文献   

12.
The spread of bacterial antibiotic resistance mutations is thought to be constrained by their pleiotropic fitness costs. Here we investigate the fitness costs of resistance in the context of the evolution of multiple drug resistance (MDR), by measuring the cost of acquiring streptomycin resistance mutations (StrepR) in independent strains of the bacterium Pseudomonas aeruginosa carrying different rifampicin resistance (RifR) mutations. In the absence of antibiotics, StrepR mutations are associated with similar fitness costs in different RifR genetic backgrounds. The cost of StrepR mutations is greater in a rifampicin‐sensitive (RifS) background, directly demonstrating antagonistic epistasis between resistance mutations. In the presence of rifampicin, StrepR mutations have contrasting effects in different RifR backgrounds: StrepR mutations have no detectable costs in some RifR backgrounds and massive fitness costs in others. Our results clearly demonstrate the importance of epistasis and genotype‐by‐environment interactions for the evolution of MDR.  相似文献   

13.
Epistatic interactions between resistance mutations in antibiotic-free environments potentially play a crucial role in the spread of resistance in pathogen populations by determining the fitness cost associated with resistance. We used an experimental evolution approach to test for epistatic interactions between 14 different pairs of rifampicin mutations in the pathogenic bacterium Pseudomonas aeruginosa in 42 different rifampicin-free environments. First, we show that epistasis between rifampicin-resistance mutations tends to be antagonistic: the fitness effect of having two mutations is generally smaller than that predicted from the effects of individual mutations on the wild-type. Second, we show that sign epistasis between resistance mutations is both common and strong; most notably, pairs of deleterious resistance mutations often partially or completely compensate for each others' costs, revealing a novel mechanism for compensatory adaptation. These results suggest that antagonistic epistasis between intragenic resistance mutations may be a key determinant of the cost of antibiotic resistance and compensatory adaptation in pathogen populations.  相似文献   

14.
The Bateson–Dobzhansky–Muller model predicts that postzygotic isolation evolves due to the accumulation of incompatible epistatic interactions, but few studies have quantified the relationship between genetic architecture and patterns of reproductive divergence. We examined how the direction and magnitude of epistatic interactions in a polygenic trait under stabilizing selection influenced the evolution of hybrid incompatibilities. We found that populations evolving independently under stabilizing selection experienced suites of compensatory allelic changes that resulted in genetic divergence between populations despite the maintenance of a stable, high‐fitness phenotype. A small number of loci were then incompatible with multiple alleles in the genetic background of the hybrid and the identity of these incompatibility loci changed over the evolution of the populations. For F1 hybrids, reduced fitness evolved in a window of intermediate strengths of epistatic interactions, but F2 and backcross hybrids evolved reduced fitness across weak and moderate strengths of epistasis due to segregation variance. Strong epistatic interactions constrained the allelic divergence of parental populations and prevented the development of reproductive isolation. Because many traits with varying genetic architectures must be under stabilizing selection, our results indicate that polygenetic drift is a plausible hypothesis for the evolution of postzygotic reproductive isolation.  相似文献   

15.
We examined the genetic basis for evolutionary divergence among geographic populations of the pitcher-plant mosquito, Wyeomyia smithii, using protein electrophoresis and line-cross analysis. Line-cross experiments were performed under both low density, near-optimal conditions, and at high, limiting larval densities sufficient to reduce fitness (rc) in parental populations by approximately 50%. We found high levels of electrophoretic divergence between ancestral and derived populations, but low levels of divergence between two ancestral populations and between two derived populations. Assessed under near-optimal conditions, the genetic divergence of fitness (rc) between ancestral and derived populations, but not between two derived populations or between two ancestral populations, has involved both allelic (dominance) and genic (epistatic) interactions. The role of dominance and epistasis in the divergence of rc among populations affects its component traits in a pattern that is unique to each cross. Patterns of genetic differentiation among populations of W. smithii provide evidence for a topographically complex “adaptive landscape” as envisioned by Wright in his “shifting balance” theory of evolution. Although we cannot definitively rule out the role of deterministic evolution in the divergence of populations on this landscape, ecological inference and genetic data are more consistent with a stochastic than a deterministic process. At high, limiting larval density, hybrid vigor is enhanced and the influence of epistasis disappears. Thus, under stressful conditions, the advantages to fitness due to hybrid heterozygosity can outweigh the deleterious effects of fragmented gene complexes. These results have important implications for the management of inbred populations. Outbreeding depression assessed in experimental crosses under benign lab, zoo, or farm conditions may not accurately reveal the increased advantages of heterozygosity in suboptimal or marginal conditions likely to be found in nature.  相似文献   

16.
Many bacterial lineages lack seemingly essential metabolic genes. Previous work suggested selective benefits could drive the loss of biosynthetic functions from bacterial genomes when the corresponding metabolites are sufficiently available in the environment. However, the factors that govern this “genome streamlining” remain poorly understood. Here we determine the effect of plasticity and epistasis on the fitness of Escherichia coli genotypes from whose genome biosynthetic genes for one, two, or three different amino acids have been deleted. Competitive fitness experiments between auxotrophic mutants and prototrophic wild‐type cells in one of two carbon environments revealed that plasticity and epistasis strongly affected the mutants’ fitness individually and interactively. Positive and negative epistatic interactions were prevalent, yet on average cancelled each other out. Moreover, epistasis correlated negatively with the expected effects of combined auxotrophy‐causing mutations, thus producing a pattern of diminishing returns. Moreover, computationally analyzing 1,432 eubacterial metabolic networks revealed that most pairs of auxotrophies co‐occurred significantly more often than expected by chance, suggesting epistatic interactions and/or environmental factors favored these combinations. Our results demonstrate that both the genetic background and environmental conditions determine the adaptive value of a loss‐of‐biochemical‐function mutation and that fitness gains decelerate, as more biochemical functions are lost.  相似文献   

17.
We investigate the relationship between the average fitness decay due to single mutations and the strength of epistatic interactions in genetic sequences. We observe that epistatic interactions between mutations are correlated to the average fitness decay, both in RNA secondary structure prediction as well as in digital organisms replicating in silico. This correlation implies that, during adaptation, epistasis and average mutational effect cannot be optimized independently. In experiments with RNA sequences evolving on a neutral network, the selective pressure to decrease the mutational load then leads to a reduction in the amount of sequences with strong antagonistic interactions between deleterious mutations in the population.  相似文献   

18.
Adaptation to novel environments arises either from new beneficial mutations or by utilizing pre‐existing genetic variation. When standing variation is used as the source of new adaptation, fitness effects of alleles may be altered through an environmental change. Alternatively, changes in epistatic genetic backgrounds may convert formerly neutral mutations into beneficial alleles in the new genetic background. By extending the coalescent theory to describe the genealogical histories of two interacting loci, I here investigated the hitchhiking effect of epistatic selection on the amount and pattern of sequence diversity at the linked neutral regions. Assuming a specific form of epistasis between two new mutations that are independently neutral, but together form a coadapted haplotype, I demonstrate that the footprints of epistatic selection differ markedly between the interacting loci depending on the order and relative timing of the two mutational events, even though both mutations are equally essential for the formation of an adaptive gene combination. Our results imply that even when neutrality tests could detect just a single instance of adaptive substitution, there may, in fact, be numerous other hidden mutations that are left undetected, but still play indispensable roles in the evolution of a new adaptation. We expect that the integration of the coalescent framework into the general theory of polygenic inheritance would clarify the connection between factors driving phenotypic evolution and their consequences on underlying DNA sequence changes, which should further illuminate the evolutionary foundation of coadapted systems.  相似文献   

19.
Malmberg RL  Held S  Waits A  Mauricio R 《Genetics》2005,171(4):2013-2027
The extent to which epistasis contributes to adaptation, population differentiation, and speciation is a long-standing and important problem in evolutionary genetics. Using recombinant inbred (RI) lines of Arabidopsis thaliana grown under natural field conditions, we have examined the genetic architecture of fitness-correlated traits with respect to epistasis; we identified both single-locus additive and two-locus epistatic QTL for natural variation in fruit number, germination, and seed length and width. For fruit number, we found seven significant epistatic interactions, but only two additive QTL. For seed germination, length, and width, there were from two to four additive QTL and from five to eight epistatic interactions. The epistatic interactions were both positive and negative. In each case, the magnitude of the epistatic effects was roughly double that of the effects of the additive QTL, varying from -41% to +29% for fruit number and from -5% to +4% for seed germination, length, and width. A number of the QTL that we describe participate in more than one epistatic interaction, and some loci identified as additive also may participate in an epistatic interaction; the genetic architecture for fitness traits may be a network of additive and epistatic effects. We compared the map positions of the additive and epistatic QTL for germination, seed width, and seed length from plants grown in both the field and the greenhouse. While the total number of significant additive and epistatic QTL was similar under the two growth conditions, the map locations were largely different. We found a small number of significant epistatic QTL x environment effects when we tested directly for them. Our results support the idea that epistatic interactions are an important part of natural genetic variation and reinforce the need for caution in comparing results from greenhouse-grown and field-grown plants.  相似文献   

20.
The fitness effect of a mutation can depend on both its genetic background, known as epistasis, and the prevailing external environment. Many examples of these dependencies are known, but few studies consider both aspects in combination, especially as they affect mutations that have been selected together. We examine interactions between five coevolved mutations in eight diverse environments. We find that mutations are, on average, beneficial across environments, but that there is high variation in their fitness effects, including many examples of mutations conferring a cost in some, but not other, genetic background‐environment combinations. Indeed, even when global interaction trends are accounted for, specific local mutation interactions are common and differed across environments. One consequence of this dependence is that the range of trade‐offs in genotype fitness across selected and alternative environments are contingent on the particular evolutionary path followed over the mutation landscape. Finally, although specific interactions were common, there was a consistent pattern of diminishing returns epistasis whereby mutation effects were less beneficial when added to genotypes of higher fitness. Our results underline that specific mutation effects are highly dependent on the combination of genetic and external environments, and support a general relationship between a genotype's current fitness and its potential to increase in fitness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号