首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the difficulty of multiple deletions using the Cre/loxP system, a simple, markerless multiple-deletion method based on a Cre/mutant lox system combining a right-element (RE) mutant lox site with a left-element (LE) mutant lox site was employed for large-scale genome rearrangements in Corynebacterium glutamicum. Eight distinct genomic regions that had been identified previously by comparative analysis of C. glutamicum R and C. glutamicum 13032 genomes were targeted for deletion. By homologous recombination, LE and RE mutant lox sites were integrated at each end of a target region. Highly efficient and accurate deletions between the two chromosomal mutant lox sites in the presence of Cre recombinase were realized. A deletion mutant lacking 190 kb of chromosomal regions, encoding a total of 188 open reading frames (ORFs), was obtained. These deletions represent the largest genomic excisions in C. glutamicum reported to date. Despite the loss of numerous predicted ORFs, the mutant exhibited normal growth under standard laboratory conditions. The Cre/loxP system using a pair of mutant lox sites provides a new, efficient genome rearrangement technique for C. glutamicum. It should facilitate the understanding of genome functions of microorganisms.  相似文献   

2.
The initial strategy of the Corynebacterium glutamicum genome project was to sequence overlapping inserts of an ordered cosmid library. High-density colony grids of approximately 28 genome equivalents were used for the identification of overlapping clones by Southern hybridization. Altogether 18 contiguous genomic segments comprising 95 overlapping cosmids were assembled. Systematic shotgun sequencing of the assembled cosmid set revealed that only 2.84 Mb (86.6%) of the C. glutamicum genome were represented by the cosmid library. To obtain a complete genome coverage, a bacterial artificial chromosome (BAC) library of the C. glutamicum chromosome was constructed in pBeloBAC11 and used for genome mapping. The BAC library consists of 3168 BACs and represents a theoretical 63-fold coverage of the C. glutamicum genome (3.28 Mb). Southern screening of 2304 BAC clones with PCR-amplified chromosomal markers and subsequent insert terminal sequencing allowed the identification of 119 BACs covering the entire chromosome of C. glutamicum. The minimal set representing a 100% genome coverage contains 44 unique BAC clones with an average overlap of 22 kb. A total of 21 BACs represented linking clones between previously sequenced cosmid contigs and provided a valuable tool for completing the genome sequence of C. glutamicum.  相似文献   

3.
The engineering of Corynebacterium glutamicum is important for enhanced production of biochemicals. To construct an improved C. glutamicum genome, we developed a precise genome excision method based on the Cre/loxP recombination system and successfully deleted 11 distinct genomic regions identified by comparative analysis of C. glutamicum genomes. Despite the loss of several predicted open reading frames, the mutant cells exhibited normal growth under standard laboratory conditions. With a total of 250 kb (7.5% of the genome), the 11 genomic regions were loaded with cryptic prophages, transposons, and genes of unknown function which were dispensable for cell growth, indicating recent horizontal acquisitions to the genome. This provides an interesting background for functional genomic studies and can be used in the improvement of cell traits.  相似文献   

4.
The complete genomic sequence of Corynebacterium glutamicum ATCC 13032, well-known in industry for the production of amino acids, e.g. of L-glutamate and L-lysine was determined. The C. glutamicum genome was found to consist of a single circular chromosome comprising 3282708 base pairs. Several DNA regions of unusual composition were identified that were potentially acquired by horizontal gene transfer, e.g. a segment of DNA from C. diphtheriae and a prophage-containing region. After automated and manual annotation, 3002 protein-coding genes have been identified, and to 2489 of these, functions were assigned by homologies to known proteins. These analyses confirm the taxonomic position of C. glutamicum as related to Mycobacteria and show a broad metabolic diversity as expected for a bacterium living in the soil. As an example for biotechnological application the complete genome sequence was used to reconstruct the metabolic flow of carbon into a number of industrially important products derived from the amino acid L-aspartate.  相似文献   

5.
6.
Corynebacterium pseudotuberculosis is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a C. pseudotuberculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the C. pseudotuberculosis genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to C. diphtheriae, C. glutamicum, C. efficiens, and C. jeikeium proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the C. pseudotuberculosis genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a C. pseudotuberculosis genome sequencing project that will begin this year.  相似文献   

7.
A cation-selective channel (porin), designated PorA, facilitates the passage of hydrophilic solutes across the cell wall of the mycolic acid-containing actinomycete Corynebacterium glutamicum. Biochemical and electrophysiological investigations of the cell wall of the mutant strain revealed the presence of an alternative channel-forming protein. This porin was purified to homogeneity and studied in lipid bilayer membranes. It forms small anion-selective channels with a diameter of about 1.4 nm and an average single-channel conductance of about 700 pS in 1 M KCl. The PorBCglut channel could be blocked by citrate in a dose-dependent manner. This result was in agreement with growth experiments in citrate as sole carbon source where growth in citrate was impaired as compared with growth in other carbon sources. The PorBCglut protein was partially sequenced and based on the resulting amino acid sequence of the corresponding gene, which was designated as porB, was identified as an unannotated 381 bp long open reading frame (ORF) in the published genome sequence of C. glutamicum ATCC13032. PorBCglut contains 126 amino acids with an N-terminal extension of 27 amino acids. One hundred and thirty-eight base pairs downstream of porB, we found an ORF that codes for a protein with about 30% identity to PorBCglut, which was named PorCCglut. The arrangement of porB and porC on the chromosome suggested that both genes belong to the same cluster. RT-PCR from overlapping regions between genes from wild-type C. glutamicum ATCC 13032 and its ATCC 13032DeltaporA mutant demonstrated that this is the case and that porB and porC are cotranscribed. The gene products PorBCglut and PorCCglut represent obviously other permeability pathways for the transport of hydrophilic compounds through the cell wall of C. glutamicum.  相似文献   

8.
Genome sequencing revealed that the Corynebacterium glutamicum genome contained, besides gltA, two additional citrate synthase homologous genes (prpC) located in two different prpDBC gene clusters, which were designated prpD1B1C1 and prpD2B2C2. The coding regions of the two gene clusters as well as the predicted gene products showed sequence identities of about 70 to 80%. Significant sequence similarities were found also to the prpBCDE operons of Escherichia coli and Salmonella enterica, which are known to encode enzymes of the propionate-degrading 2-methylcitrate pathway. Homologous and heterologous overexpression of the C. glutamicum prpC1 and prpC2 genes revealed that their gene products were active as citrate synthases and 2-methylcitrate synthases. Growth tests showed that C. glutamicum used propionate as a single or partial carbon source, although the beginning of the exponential growth phase was strongly delayed by propionate for up to 7 days. Compared to growth on acetate, the specific 2-methylcitrate synthase activity increased about 50-fold when propionate was provided as the sole carbon source, suggesting that in C. glutamicum the oxidation of propionate to pyruvate occurred via the 2-methylcitrate pathway. Additionally, two-dimensional gel electrophoresis experiments combined with mass spectrometry showed strong induction of the expression of the C. glutamicum prpD2B2C2 genes by propionate as an additional carbon source. Mutational analyses revealed that only the prpD2B2C2 genes were essential for the growth of C. glutamicum on propionate as a sole carbon source, while the function of the prpD1B1C1 genes remains obscure.  相似文献   

9.
10.
11.
12.
The genome of a high lipid-producing fungus Mucor circinelloides WJ11 (36% w/w lipid, cell dry weight, CDW) was sequenced and compared with that of the low lipid-producing strain, CBS 277.49 (15% w/w lipid, CDW), which had been sequenced by Joint Genome Institute. The WJ11 genome assembly size was 35.4 Mb with a G+C content of 39.7%. The general features of WJ11 and CBS 277.49 indicated that they have close similarity at the level of gene order and gene identity. Whole genome alignments with MAUVE revealed the presence of numerous blocks of homologous regions and MUMmer analysis showed that the genomes of these two strains were mostly co-linear. The central carbon and lipid metabolism pathways of these two strains were reconstructed and the numbers of genes encoding the enzymes related to lipid accumulation were compared. Many unique genes coding for proteins involved in cell growth, carbohydrate metabolism and lipid metabolism were identified for each strain. In conclusion, our study on the genome sequence of WJ11 and the comparative genomic analysis between WJ11 and CBS 277.49 elucidated the general features of the genome and the potential mechanism of high lipid accumulation in strain WJ11 at the genomic level. The different numbers of genes and unique genes involved in lipid accumulation may play a role in the high oleaginicity of strain WJ11.  相似文献   

13.
The pyruvate kinase gene pyk from Corynebacterium glutamicum was cloned by applying a combination of PCR, site-specific mutagenesis, and complementation. A 126-bp DNA fragment central to the C. glutamicum pyk gene was amplified from genomic DNA by PCR with degenerate oligonucleotides as primers. The cloned DNA fragment was used to inactivate the pyk gene in C. glutamicum by marker rescue mutagenesis via homologous recombination. The C. glutamicum pyk mutant obtained was unable to grow on minimal medium containing ribose as the sole carbon source. Complementation of this phenotype by a gene library resulted in the isolation of a 2.8-kb PstI-BamHI genomic DNA fragment harboring the C. glutamicum pyk gene. Multiple copies of plasmid-borne pyk caused a 20-fold increase of pyruvate kinase activity in C. glutamicum cell extracts. By using large internal fragments of the cloned C. glutamicum gene, pyk mutant derivatives of the lysine production strain Corynebacterium lactofermentum 21799 were generated by marker rescue mutagenesis. As determined in shake flask fermentations, lysine production in pyk mutants was 40% lower than that in the pyk+ parent strain, indicating that pyruvate kinase is essential for high-level lysine production. This finding questions an earlier hypothesis postulating that redirection of carbon flow at the phosphoenol pyruvate branch point of glycolysis through elimination of pyruvate kinase activity results in an increase of lysine production in C. glutamicum and its close relatives.  相似文献   

14.
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition.  相似文献   

15.
16.
The inspection of the complete genome sequence of Corynebacterium glutamicum ATCC 13032 led to the identification of dapC and dapF, the last two unknown genes of the succinylase branch of the L-lysine biosynthesis. The deduced DapF protein of C. glutamicum is characterized by a two-domain structure and a conserved diaminopimelate (DAP) epimerase signature. Overexpression of dapF resulted in an 8-fold increase of the specific epimerase activity. A defined deletion in the dapF gene led to a reduced growth of C. glutamicum in a medium with excess carbon but limited ammonium availability. The predicted DapC protein of C. glutamicum shared 29% identical amino acids with DapC from Bordetella pertussis, the only enzymatically characterized N-succinyl-aminoketopimelate aminotransferase. Overexpression of the dapC gene in C. glutamicum resulted in a 9-fold increase of the specific aminotransferase activity. A C. glutamicum mutant with deleted dapC showed normal growth characteristics with excess carbon and limited ammonium. Even a mutation of the two genes dapC and ddh, interrupting both branches of the split pathway, could be established in C. glutamicum. Overexpression of the dapF or the dapC gene in an industrial C. glutamicum strain resulted in an increased L-lysine production, indicating that both genes might be relevant targets for the development of improved production strains.  相似文献   

17.
Corynebacterium glutamicum GlxR is a cyclic AMP (cAMP) receptor protein-type regulator. Although over 200 GlxR-binding sites in the C. glutamicum genome are predicted in silico, studies on the physiological function of GlxR have been hindered by the severe growth defects of a glxR mutant. This study identified the GlxR regulon by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analyses. In total, 209 regions were detected as in vivo GlxR-binding sites. In vitro binding assays and promoter-reporter assays demonstrated that GlxR directly activates expression of genes for aerobic respiration, ATP synthesis, and glycolysis and that it is required for expression of genes for cell separation and mechanosensitive channels. GlxR also directly represses a citrate uptake gene in the presence of citrate. Moreover, ChIP-chip analyses showed that GlxR was still able to interact with its target sites in a mutant with a deletion of cyaB, the sole adenylate cyclase gene in the genome, even though binding affinity was markedly decreased. Thus, GlxR is physiologically functional at the relatively low cAMP levels in the cyaB mutant, allowing the cyaB mutant to grow much better than the glxR mutant.  相似文献   

18.
Corynebacterium glutamicum has played a principal role in the progress of the amino acid fermentation industry. The complete genome sequence of the representative wild-type strain of C. glutamicum, ATCC 13032, has been determined and analyzed to improve our understanding of the molecular biology and physiology of this organism, and to advance the development of more efficient production strains. Genome annotation has helped in elucidation of the gene repertoire defining a desired pathway, which is accelerating pathway engineering. Post genome technologies such as DNA arrays and proteomics are currently undergoing rapid development in C. glutamicum. Such progress has already exposed new regulatory networks and functions that had so far been unidentified in this microbe. The next goal of these studies is to integrate the fruits of genomics into strain development technology. A novel methodology that merges genomics with classical strain improvement has been developed and applied for the reconstruction of classically derived production strains. How can traditional fermentation benefit from the C. glutamicum genomic data? The path from genomics to biotechnological processes is presented.  相似文献   

19.
王钰  郑平  孙际宾 《生物工程学报》2021,37(5):1603-1618
谷氨酸棒杆菌Corynebacterium glutamicum是重要的工业微生物,尤其是在氨基酸工业中,每年用于600余万t氨基酸的生物制造。近年来,谷氨酸棒杆菌代谢工程使能技术正在不断完善,不仅加快了细胞工厂的创建和优化,拓展了底物谱和产物谱,也推动了谷氨酸棒杆菌的基础研究,使谷氨酸棒杆菌成为代谢工程的理想底盘细胞。文中综述了近期针对谷氨酸棒杆菌开发的代谢工程使能技术,着重介绍了基于CRISPR的基因组编辑、基因表达调控、适应性进化和生物传感器等技术的开发和应用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号