首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulating mammalian checkpoints through Cdc25 inactivation   总被引:11,自引:0,他引:11       下载免费PDF全文
Precise monitoring of DNA replication and chromosome segregation ensures that there is accurate transmission of genetic information from a cell to its daughters. Eukaryotic cells have developed a complex network of checkpoint pathways that sense DNA lesions and defects in chromosome segregation, spindle assembly and the centrosome cycle, leading to an inhibition of cell-cycle progression for the time required to remove the defect and thus preventing genomic instability. The activation of checkpoints that are responsive to DNA damage or incomplete DNA replication ultimately results in the inhibition of cyclin-dependent kinases. This review focuses on our understanding of the biochemical mechanisms that specifically inactivate Cdc25 (cell division cycle 25) phosphatases to achieve this. The evidence for links between checkpoint deregulation and oncogenesis is discussed.  相似文献   

2.
DNA-responsive checkpoints operate at the G2/M transition to prevent premature mitosis in the presence of incompletely replicated or damaged DNA. These pathways prevent mitotic entry, at least in part, by suppressing Cdc25, the phosphatase that activates Cdc2/Cyclin B. To gain insight into how checkpoint signaling controls Cdc25 function, we have carefully examined the individual steps in Cdc25 activation. We found that removal of the regulatory protein, 14-3-3, that binds to phosphorylated Cdc25 during interphase is one of the early steps in mitotic activation. Moreover, our studies unexpectedly implicated the phosphatase PP1 and the G1/S kinase Cdk2 in the process of Cdc25 activation. Here we integrate our findings and those of others to propose a model for Cdc25 activation in an effort to provide insight into novel loci of DNA-responsive checkpoint control of mitotic entry.  相似文献   

3.
Summary The major driving forces in the eukaryotic cell cycle are the cyclin-dependent kinases (Cdk). Cdks can be activated through dephosphorylation of inhibitory phosphorylations catalyzed by the Cdc25 phosphatase family. In higher-eukaryotic cells, there exist three Cdc25 family members, Cdc25A, Cdc25B, and Cdc25C. While Cdc25A plays a major role at the G1-to-S phase transition, Cdc25B and C are required for entry into mitosis. The regulation of Cdc25C is crucial for the operation of the DNA-damage checkpoint. Two protein kinases, Chk1 and Cds1, can be activated in response to DNA damage or in the presence of unreplicated DNA. Chk1 and Cds1 may phosphorylate Cdc25C to prevent entry into mitosis through inhibition of Cdc2 (Cdk1) dephosphorylation.  相似文献   

4.
Structural and functional insights into RAGE activation by multimeric S100B   总被引:3,自引:0,他引:3  
Nervous system development and plasticity require regulation of cell proliferation, survival, neurite outgrowth and synapse formation by specific extracellular factors. The EF-hand protein S100B is highly expressed in human brain. In the extracellular space, it promotes neurite extension and neuron survival via the receptor RAGE (receptor for advanced glycation end products). The X-ray structure of human Ca(2+)-loaded S100B was determined at 1.9 A resolution. The structure revealed an octameric architecture of four homodimeric units arranged as two tetramers in a tight array. The presence of multimeric forms in human brain extracts was confirmed by size-exclusion experiments. Recombinant tetrameric, hexameric and octameric S100B were purified from Escherichia coli and characterised. Binding studies show that tetrameric S100B binds RAGE with higher affinity than dimeric S100B. Analytical ultracentrifugation studies imply that S100B tetramer binds two RAGE molecules via the V-domain. In line with these experiments, S100B tetramer caused stronger activation of cell growth than S100B dimer and promoted cell survival. The structural and the binding data suggest that tetrameric S100B triggers RAGE activation by receptor dimerisation.  相似文献   

5.
The receptor tyrosine kinase Met plays a pivotal role in vertebrate development and tissue regeneration, its deregulation contributes to cancer. Met is also targeted during the infection by the facultative intracellular bacterium Listeria monocytogenes. The mechanistic basis for Met activation by its natural ligand hepatocyte growth factor/scatter factor (HGF/SF) is only beginning to be understood at a structural level. Crystal structures of Met in complex with L. monocytogenes InlB suggest that Met dimerization by this bacterial invasion protein is mediated by a dimer contact of the ligand. Here, I review the structural basis of Met activation by InlB and highlight parallels and differences to the physiological Met ligand HGF/SF and its splice variant NK1.  相似文献   

6.
7.
G-protein-coupled receptors (GPCRs) are the largest family of eukaryotic plasma membrane receptors, and are responsible for the majority of cellular responses to external signals. GPCRs share a common architecture comprising seven transmembrane (TM) helices. Binding of an activating ligand enables the receptor to catalyze the exchange of GTP for GDP in a heterotrimeric G protein. GPCRs are in a conformational equilibrium between inactive and activating states. Crystallographic and spectroscopic studies of the visual pigment rhodopsin and two beta-adrenergic receptors have defined some of the conformational changes associated with activation.  相似文献   

8.
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.  相似文献   

9.
Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members.  相似文献   

10.
11.
Peptidyl-tRNA hydrolase is an essential enzyme which acts as one of the rescue factors of the stalled ribosomes. It is an esterase that hydrolyzes the ester bond in the peptidyl-tRNA molecules, which are products of ribosome stalling. This enzyme is required for rapid clearing of the peptidyl-tRNAs, the accumulation of which in the cell leads to cell death. Over the recent years, it has been heralded as an attractive drug target for antimicrobial therapeutics. Two distinct classes of peptidyl-tRNA hydrolase, Pth and Pth2, have been identified in nature. This review gives an overview of the structural and functional aspects of Pth, along with its sequence and structural comparison among various species of bacteria. While the mode of binding of the substrate to Pth and the mechanism of hydrolysis are still speculated upon, the structure-based drug design using this protein as the target is still largely unexplored. This review focuses on the structural features of Pth, giving a direction to structure-based drug design on this protein.  相似文献   

12.
Amyloid is traditionally viewed as a consequence of protein misfolding and aggregation and is most notorious for its association with debilitating and chronic human diseases. However, a growing list of examples of "functional amyloid" challenges this bad reputation and indicates that many organisms can employ the biophysical properties of amyloid for their benefit. Because of developments in the structural studies of amyloid, a clearer picture is emerging about what defines amyloid structure and the properties that unite functional and pathological amyloids. Here, we review various amyloids and place them within the framework of the latest structural models.  相似文献   

13.
The cell nucleus is surrounded by a double membrane system, the nuclear envelope (NE), with the outer nuclear membrane being continuous with the endoplasmic reticulum. Nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes, forming aqueous channels that allow free diffusion of small molecules but that also mediate the energy-dependent transport of large macromolecules. The NPC represents the largest known molecular complex and is composed of about 30 different proteins, termed nucleoporins (Nups). Here, we review recent studies that provide novel insight into the structural and functional organization of nucleocytoplasmic transport. In addition, prospects towards a high resolution model of the nuclear pore are discussed.  相似文献   

14.
The formulation of network models from global protein studies is essential to understand the functioning of organisms. Network models of the proteome enable the application of Complex Network Analysis, a quantitative framework to investigate large complex networks using techniques from graph theory, statistical physics, dynamical systems and other fields. This approach has provided many insights into the functional organization of the proteome so far and will likely continue to do so. Currently, several network concepts have emerged in the field of proteomics. It is important to highlight the differences between these concepts, since different representations allow different insights into functional organization. One such concept is the protein interaction network, which contains proteins as nodes and undirected edges representing the occurrence of binding in large-scale protein-protein interaction studies. A second concept is the protein-signaling network, in which the nodes correspond to levels of post-translationally modified forms of proteins and directed edges to causal effects through post-translational modification, such as phosphorylation. Several other network concepts were introduced for proteomics. Although all formulated as networks, the concepts represent widely different physical systems. Therefore caution should be taken when applying relevant topological analysis. We review recent literature formulating and analyzing such networks.  相似文献   

15.
《Cell research》2020,(4):315-327
Inflammasomes are multi-component signaling complexes critical to the initiation of pyroptotic cell death in response to invading pathogens and cellular damage....  相似文献   

16.
Dbl homology (DH) domains are almost always followed immediately by pleckstrin homology (PH) domains in Dbl family proteins, and these DH-PH fragments directly activate GDP-bound Rho GTPases by catalyzing the exchange of GDP for GTP. New crystal structures of the DH-PH domains from leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) and PDZ-RhoGEF bound to RhoA reveal how DH-PH domains cooperate to specifically activate Rho GTPases.  相似文献   

17.
The M-phase inducer, Cdc25C, is a dual-specificity phosphatase that directly phosphorylates and activates the cyclin B/Cdc2 kinase complex, leading to initiation of mitosis. Cdc25 itself is activated at the G2/M transition by phosphorylation on serine and threonine residues. Previously, it was demonstrated that Cdc2 kinase is capable of phosphorylating and activating Cdc25, suggesting the existence of a positive feedback loop. In the present study, kinases other than Cdc2 that can phosphorylate and activate Cdc25 were investigated. Cdc25 was found to be phosphorylated and activated by cyclin A/Cdk2 and cyclin E/Cdk2 in vitro. However, in interphase Xenopus egg extracts with no detectable Cdc2 and Cdk2, treatment with the phosphatase inhibitor microcystin activated a distinct kinase that could phosphorylate and activate Cdc25. Microcystin also induced other mitotic phenomena such as chromosome condensation and nuclear envelope breakdown in extracts containing less than 5% of the mitotic level of Cdc2 kinase activity. These findings implicate a kinase other than Cdc2 and Cdk2 that may initially activate Cdc25 in vivo and suggest that this kinase may also phosphorylate M-phase substrates even in the absence of Cdc2 kinase.  相似文献   

18.
Recent years have seen tremendous breakthroughs in structure determination of G-protein-coupled receptors (GPCRs). In 2011, two agonist-bound active-state structures of rhodopsin have been published. Together with structures of several rhodopsin activation intermediates and a wealth of biochemical and spectroscopic information, they provide a unique structural framework on which to understand GPCR activation. Here we use this framework to compare the recent crystal structures of the agonist-bound active states of the β(2) adrenergic receptor (β(2)AR) and the A(2A) adenosine receptor (A(2A)AR). While activation of these three GPCRs results in rearrangements of TM5 and TM6, the extent of this conformational change varies considerably. Displacements of the cytoplasmic side of TM6 ranges between 3 and 8? depending on whether selective stabilizers of the active conformation are used (i.e. a G-protein peptide in the case of rhodopsin or a conformationally selective nanobody in the case of the β(2)AR) or not (A(2A)AR). The agonist-induced conformational changes in the ligand-binding pocket are largely receptor specific due to the different chemical nature of the agonists. However, several similarities can be observed, including a relocation of conserved residues W6.48 and F6.44 towards L5.51 and P5.50, and of I/L3.40 away from P5.50. This transmission switch links agonist binding to the movement of TM5 and TM6 through the rearrangement of the TM3-TM5-TM6 interface, and possibly constitutes a common theme of GPCR activation.  相似文献   

19.
Bacterial L-asparaginases are enzymes that catalyze the hydrolysis of l-asparagine to aspartic acid. For the past 30 years, these enzymes have been used as therapeutic agents in the treatment of acute childhood lymphoblastic leukemia. Their intrinsic low-rate glutaminase activity, however, causes serious side-effects, including neurotoxicity, hepatitis, coagulopathy, and other dysfunctions. Erwinia carotovora asparaginase shows decreased glutaminase activity, so it is believed to have fewer side-effects in leukemia therapy. To gain detailed insights into the properties of E. carotovora asparaginase, combined crystallographic, thermal stability and cytotoxic experiments were performed. The crystal structure of E. carotovoral-asparaginase in the presence of L-Asp was determined at 2.5 A resolution and refined to an R cryst of 19.2 (R free = 26.6%) with good stereochemistry. Cytotoxicity measurements revealed that E. carotovora asparaginase is 30 times less toxic than the Escherichia coli enzyme against human leukemia cell lines. Moreover, denaturing experiments showed that E. carotovora asparaginase has decreased thermodynamic stability as compared to the E. coli enzyme and is rapidly inactivated in the presence of urea. On the basis of these results, we propose that E. carotovora asparaginase has limited potential as an antileukemic drug, despite its promising low glutaminase activity. Our analysis may be applicable to the therapeutic evaluation of other asparaginases as well.  相似文献   

20.
Structural and functional insights into core ABA signaling   总被引:1,自引:0,他引:1  
A series of papers in the last year reported major advances in our understanding of abscisic acid (ABA) signaling: the identification of soluble ABA receptors, the elucidation of a core ABA signaling pathway and structural insights into the mechanism of ABA perception and signaling. Here we summarize these advances, which have shown in atomic resolution that the ABA receptors PYR1, PYL1 and PYL2 function as allosteric switches that inhibit type 2C protein phosphatases (PP2Cs) in response to ABA. These receptors function at the apex of a core signaling pathway that regulates ABA responses by controlling SnRK2 kinase activity and the phosphorylation of downstream target proteins such as ABFs, which control nuclear responses, and the ion channel SLAC1, which mediates electrophysiological responses to ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号