首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood flow restoration to ischemic tissue is affected by various risk factors. The aim of this study was to examine gender effects on arteriogenesis and angiogenesis in a mouse ischemic hindlimb model. C57BL/6J mice were subjected to unilateral hindlimb ischemia. Flow recovery was less and hindlimb use impairment was greater in females. No gender difference in vessel number was found at baseline, although 7 days postsurgery females had fewer α-smooth muscle actin-positive vessels in the midpoint of the adductor region. Females had higher hindlimb vascular resistance, were less responsive to vasodilators, and were more sensitive to vasoconstrictors postligation. Western blotting showed that females had higher baseline levels of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) in the calf, while 7 days postligation males had higher levels of VEGF, eNOS, and phosphorylated vasodilator stimulated phosphoprotein. Females had less angiogenesis in a Matrigel plug assay and less endothelial cell proliferation in vitro. Females have impaired recovery of flow, a finding presumably caused by multiple factors including decreased collateral remodeling, less angiogenesis, impaired vasodilator response, and increased vasoconstrictor activity; our results also suggest the possibility that new collateral formation, from capillaries, is impaired in females.  相似文献   

2.
Nitric oxide (NO) is a potential regulator of ischemic vascular remodeling, and as such therapies augmenting its bioavailability may be useful for the treatment of ischemic tissue diseases. Here we examine the effect of administering the NO prodrug sodium nitrite on arteriogenesis activity during established tissue ischemia. Chronic hindlimb ischemia was induced by permanent unilateral femoral artery and vein ligation. Five days postligation; animals were randomized to control PBS or sodium nitrite (165 μg/kg) therapy twice daily. In situ vascular remodeling was measured longitudinally using SPY angiography and Microfil vascular casting. Delayed sodium nitrite therapy rapidly increased ischemic limb arterial vessel diameter and branching in a NO-dependent manner. SPY imaging angiography over time showed that nitrite therapy enhanced ischemic gracillis collateral vessel formation from the profunda femoris to the saphenous artery. Immunofluorescent staining of smooth muscle cell actin also confirmed that sodium nitrite therapy increased arteriogenesis in a NO-dependent manner. The NO prodrug sodium nitrite significantly increases arteriogenesis and reperfusion of established severe chronic tissue ischemia.  相似文献   

3.
Ischemic revascularization involves extensive structural adaptation of the vasculature, including both angiogenesis and arteriogenesis. Previous studies suggest that fibroblast growth factor (FGF)-2 participates in both angiogenesis and arteriogenesis. Despite this, the specific role of endogenous FGF-2 in vascular adaptation during ischemic revascularization is unknown. Therefore, we used femoral artery ligation in Fgf2(+/+) and Fgf2(-/-) mice to test the hypothesis that endogenous FGF-2 is an important regulator of angiogenesis and arteriogenesis in the setting of hindlimb ischemia. Femoral ligation increased capillary and arteriole density in the ischemic calf in both Fgf2(+/+) and Fgf2(-/-) mice. The level of angiographically visible arteries in the thigh was increased in the ischemic hindlimb in all mice, and no significant differences were observed between Fgf2(+/+) and Fgf2(-/-) mice. Additionally, limb perfusion progressively improved to peak values at day 35 postsurgery in both genotypes. Given the equivalent responses observed in Fgf2(+/+) and Fgf2(-/-) mice, we demonstrate that endogenous FGF-2 is not required for revascularization in the setting of peripheral ischemia. Vascular adaptation, including both angiogenesis and arteriogenesis, was not affected by the absence of FGF-2 in this model.  相似文献   

4.
Few studies have examined in detail the combined effects of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) gene delivery on collateral development. Here, we evaluated the potential synergism of naked DNA vectors encoding VEGF and bFGF using a skeletal-muscle based ex vivo angiogenesis assay and compared tissue perfusion and limb loss in a murine model of hindlimb ischemia. In the ex vivo angiogenesis assay, the VEGF+bFGF combination group had a larger capillary sprouting area than those of the LacZ, VEGF, and bFGF groups. Consistent with these results, regional blood flow recovery on day 14 was also highest in the VEGF+bFGF combination group, followed by the bFGF, VEGF, and LacZ groups. The limb loss frequency was 0% in the combination group, whereas the limb loss frequencies of the other groups were 7-29%. The ischemic muscles of the combination group revealed evidence of increased angiogenesis and arteriogenesis and the upregulated expression of genes that may be associated with arteriogenesis, such as those for cardiac ankyrin repeat protein, early growth response factor-1, and transforming growth factor-beta1. Our study has implications for the development of a combined gene therapy for the vascular occlusive diseases.  相似文献   

5.
Both collateral vessel enlargement (arteriogenesis) and capillary growth (angiogenesis) in skeletal muscle occur in response to exercise training. Vascular endothelial growth factor (VEGF) is implicated in both processes. Thus we examined the effect of a VEGF receptor (VEGF-R) inhibitor (ZD4190, AstraZeneca) on collateral-dependent blood flow in vivo and collateral artery size ex vivo (indicators of arteriogenesis) and capillary contacts per fiber (CCF; an index of angiogenesis) in skeletal muscle of both sedentary and exercise-trained rats 14 days after bilateral occlusion of the femoral arteries. Total daily treadmill run time increased appreciably from approximately 70 to approximately 100 min (at 15-20 m/min, twice per day) and produced a large (approximately 75%, P < 0.01) increase in calf muscle blood flow and a greater size of the collateral artery (wall cross-sectional area). ZD4190, which previously has been shown to inhibit the activity of VEGF-R2 and -R1 tyrosine kinase in vitro (IC50 = 30 and 700 nM, respectively), completely blocked the increase in collateral-dependent blood flow and inhibited collateral vessel enlargement. Thus exercise-stimulated collateral arteriogenesis appears to be completely dependent on VEGF-R signaling. Interestingly, enhanced mRNA expression of the VEGF family ligand placental growth factor (2- to 3.5-fold), VEGF-R1 (approximately 2-fold), and endothelial nitric oxide synthase (2- to 3.5-fold) in an isolated collateral artery implicates these factors as important in arteriogenesis. Training of ischemic muscle also induced angiogenesis, as shown by an increase (approximately 25%, P < 0.01) in CCF in white gastrocnemius muscle. VEGF-R inhibition only partially blocked (P < 0.01) but did not eliminate the increase (P < 0.01) in capillarity. Our findings indicate that VEGF-R tyrosine kinase activity is essential for collateral arteriogenesis and important for the angiogenesis induced in ischemic muscle by exercise training; however, other angiogenic stimuli are also important for angiogenesis in flow-limited active muscle.  相似文献   

6.
The angiopoietins (ANGPT) are ligands for the endothelial cell (EC) receptor tyrosine kinase, Tie2. Angpt-1 is a Tie2 agonist that promotes vascular maturation and stabilization, whereas Angpt-2 is a partial agonist/antagonist involved in the initiation of postnatal angiogenesis. Therefore, we hypothesized that overexpression of Angpt-2 would be more effective than Angpt-1 for enhancing the perfusion recovery in the ischemic hindlimb. Perfusion recovery was markedly impaired in Tie2-deficient animals at day 35 in a model of chronic hindlimb ischemia. Injections of Angpt-2 or VEGFA plasmid at 7 days post femoral artery resection enhanced recovery and improved arteriogenesis as assessed by angiographic scores, whereas Angpt-1 or null plasmid had no effect. In addition, Angpt-2 together with VEGF resulted in greater improvement in perfusion and collateral vessel formation than VEGF alone. Similarly, conditional overexpression of Angpt-2 in mice improved ischemic limb blood flow recovery, while Angpt-1 overexpression was ineffective. These data from Tie2 heterozygote deficient mice demonstrate, for the first time, the importance of the Tie2 pathway in spontaneous neovascularization in response to chronic hindlimb ischemia. Moreover, they show that overexpression of the partial agonist, Angpt-2, but not Angpt-1, enhanced ischemic hind limb perfusion recovery and collateralization, suggesting that a coordinated sequence antagonist and agonist activity is required for effective therapeutic revascularization.  相似文献   

7.
8.
Previous findings have suggested that collateral arteries grow from preexisting arteriolar anastomoses ("arteriogenesis"). To investigate whether collateral growth occurs without preceding angiogenesis, we obtained vascular casts and postmortem angiographies 3, 7, and 21 days after unilateral femoral artery occlusion in the rat. Proliferation kinetics were determined after 5'-bromo-2'-desoxyuridin infusion. A preexisting anastomosis was identified. Proliferation of this vessel began 24 h after femoral artery occlusion, increased maximally during the first 3 days, and reached 60% at day 7. Cell division was restricted to preexisting anastomoses and occurred neither in directly neighboring arterial vessels nor in capillaries. Collateral vessels doubled their diameter within 7 days and assumed a typical corkscrew appearance (increase of length: 21%). After 7 days of occlusion, we measured a further increase of length (14%) but no proliferation or increase of diameter. We conclude that arteriogenesis is a biphasic process involving rapid proliferation of preexisting arteriolar shunts followed by pronounced remodeling processes. Arteriogenesis occurs independently of angiogenesis and denotes a separate entity of vascular proliferation.  相似文献   

9.
The formation of vascular networks during embryogenesis and early stages of development encompasses complex and tightly regulated growth of blood vessels, followed by maturation of some vessels, and spatially controlled disconnection and pruning of others. The adult vasculature, while more quiescent, is also capable of adapting to changing physiological conditions by remodeling blood vessels. Numerous studies have focused on understanding key factors that drive vessel growth in the adult in response to ischemic injury. However, little is known about the extent of vessel rarefaction and its potential contribution to the final outcome of vascular recovery. We addressed this topic by characterizing the endogenous phases of vascular repair in a mouse model of hindlimb ischemia. We showed that this process is biphasic. It encompasses an initial rapid phase of vessel growth, followed by a later phase of vessel rarefaction. In healthy mice, this process resulted in partial recovery of perfusion and completely restored the ability of mice to run voluntarily. Given that the ability to revascularize can be compromised by a cardiovascular risk factor such as diabetes, we also examined vascular repair in diabetic mice. We found that paradoxically both the initial growth and subsequent regression of collateral vessels were more pronounced in the setting of diabetes and resulted in impaired recovery of perfusion and impaired functional status. In conclusion, our findings demonstrate that the formation of functional collateral vessels in the hindlimb requires vessel growth and subsequent vessel rarefaction. In the setting of diabetes, the physiological defect was not in the initial formation of vessels but rather in the inability to sustain newly formed vessels.  相似文献   

10.
The unique contributions of connexin (Cx)37 and Cx40, gap junction-forming proteins that are coexpressed in vascular endothelium, to the recovery of tissues from ischemic injury are unknown. We recently reported that Cx37-deficient (Cx37(-/-)) animals recovered ischemic hindlimb function more quickly and to a greater extent than wild-type (WT) or Cx40(-/-) animals, suggesting that Cx37 limits recovery in the WT animal. Here, we tested the hypothesis that enhanced angiogenesis, arteriogenesis, and vasculogenesis contribute to improved postischemic hindlimb recovery in Cx37(-/-) animals. Ischemia was induced unilaterally in the hindlimbs of WT or Cx37(-/-) mice (isoflurane anesthesia). Postsurgical limb appearance, use, and perfusion were documented during recovery, and the number (and size) of large and small vessels was determined. Native collateral number, predominantly established during embryonic development (vasculogenesis), was also determined in the pial circulation. Both microvascular density in the gastrocnemius of the ischemic limb (an angiogenic field) and the number and tortuosity of larger vessels in the gracilis vasculature (an arteriogenic field) were increased in Cx37(-/-) animals compared with WT animals. Cx37(-/-) mice also had an increased (vs. WT) number of collateral vessels in the pial circulation. These findings suggest that in Cx37(-/-) animals, improved recovery of the ischemic hindlimb involves enhanced vasculogenesis, resulting in increased numbers of collaterals in the hindlimb (and pial circulations) and more extensive collateral remodeling and angiogenesis. These results are consistent with Cx37 exerting a growth-suppressive effect in the vasculature that limits embryonic vasculogenesis as well as arteriogenic and angiogenic responses to ischemic injury in the adult animal.  相似文献   

11.
Arteriogenesis, the growth of natural bypass arteries, is triggered by hemodynamic forces within vessels and requires a balanced inflammatory response, involving induction of the chemokine MCP-1 and recruitment of leukocytes. However, little is known how these processes are coordinated. The MAP-kinase-activated-proteinkinase-2 (MK2) is a critical regulator of inflammatory processes and might represent an important link between cytokine production and cell recruitment during postnatal arteriogenesis. Therefore, the present study investigated the functional role of MK2 during postnatal arteriogenesis. In a mouse model of hindlimb ischemia (HLI) MK2-deficiency (MK2KO) significantly impaired ischemic blood flow recovery and growth of collateral arteries as well as perivascular recruitment of mononuclear cells and macrophages. This was accompanied by induction of endothelial MCP-1 expression in wildtype (WT) but not in MK2KO collateral arteries. Following HLI, MK2 activation rapidly occured in the endothelium of growing WT arteries in vivo. In vitro, inflammatory cytokines and cyclic stretch activated MK2 in endothelial cells, which was required for stretch- and cytokine-induced release of MCP-1. In addition, a monocyte cell autonomous function of MK2 was uncovered potentially regulating MCP-1-dependent monocyte recruitment to vessels: MCP-1 stimulation of WT monocytes induced MK2 activation and monocyte migration in vitro. The latter was reduced in MK2KO monocytes, while in vivo MK2 was activated in monocytes recruited to collateral arteries. In conclusion, MK2 regulates postnatal arteriogenesis by controlling vascular recruitment of monocytes/macrophages in a dual manner: regulation of endothelial MCP-1 expression in response to hemodynamic and inflammatory forces as well as MCP-1 dependent monocyte migration.  相似文献   

12.
The identification of collateral artery growth (arteriogenesis) as the only mechanism to compensate for the loss of an occluded artery forced us to define the mechanisms responsible for this type of vessel growth. To achieve this, a variety of coronary as well as peripheral models of arteriogenesis have been developed. Based on these studies it is obvious that arteriogenesis obeys different mechanisms than angiogenesis, the sprouting of capillaries. Upon occlusion of an artery, the blood flow is redirected into preexisting arteriolar anastomoses that experience increased mechanical forces such as shear stress and circum ferential wall stress. The endothelium of the arteriolar connections is then activated, resulting in an increased release of monocyte-attracting proteins as well as an upregulation of adhesion molecules. Upon adherence and extravasation, monocytes promote arteriogenesis by supplying growth factors and cytokines that bind to receptors that are expressed on vascular cells within a limited time frame. Animal studies evidenced that factors, such as monocyte chemoattractant protein-1, granulocyte-monocyte colony-stimulating factor, or transforming growth factor-β1, that either attract or prolong the lifetime of monocytes efficiently enhance collateral artery growth, an effect that was seen only to a minor degree after application of a single growth factor. Bone marrow-derived stems cells and endothelial progenitor cells do not incorporate in growing arteries but, rather, function as supporting cells. Complete elucidation of the mechanisms of arteriogenesis may lead to efficacious therapies counteracting the devastating consequences of vascular occlusive diseases.  相似文献   

13.
14.
Ischemia is the reduction of blood flow to tissues by injury of blood vessels. Depending on the sites of tissues and grade of ischemia, ischemia can cause many serious complications. This study aimed to evaluate the effects of the E-twenty six (ETS) factor Ets variant 2 (ETV2) gene expression in angiogenesis and the effect of ETV2 gene therapy in a mouse model of hindlimb ischemia. The role of ETV2 on endothelial cell proliferation was evaluated in vitro. Knockdown of ETV2 expression was done using short hairpin RNA (shRNA) lentiviral viral particles. The ETV2 viral vector was injected into the skeletal muscles at the ligated and burned sites of the hindlimb and evaluated for its efficacy as a gene therapy modality for ischemia. Vascular regeneration in mice was indirectly evaluated by changes in mouse survival, necrotic grades of the leg, normal blood oxygen saturation level (SpO2), and blood flow by trypan blue injection assay. Preliminary data showed that ETV2 expression played a role in angiogenesis of endothelial cells. ETV2 overexpression could trigger and stimulate proliferation of skeletal endothelial cells. In vivo knockdown of ETV2 expression inhibited the auto-recovery of ischemic hindlimb, while overexpression of ETV2 helped to rescue leg loss and reduce necrosis, significantly improving angiogenesis in hindlimb ischemia. Our findings demonstrate that ETV2 gene therapy is a potentially effective modality for vascular regeneration.  相似文献   

15.
Anthrax toxin receptor 1/tumor endothelial marker 8 (Antxr1 or TEM8) is up-regulated in tumor vasculature and serves as a receptor for anthrax toxin, but its physiologic function is unclear. The objective of this study was to evaluate the role of Antxr1 in arteriogenesis. The role of Antxr1 in arteriogenesis was tested by measuring gene expression and immunohistochemistry in a mouse model of hindlimb ischemia using wild-type and ANTXR1-/- mice. Additional tests were performed by measuring gene expression in in vitro models of fluid shear stress and hypoxia, as well as in human muscle tissues obtained from patients having peripheral artery disease. We observed that Antxr1 expression transiently increased in ischemic tissues following femoral artery ligation and that its expression was necessary for arteriogenesis. In the absence of Antxr1, the mean arterial lumen area in ischemic tissues decreased. Antxr1 mRNA and protein expression was positively regulated by fluid shear stress, but not by hypoxia. Furthermore, Antxr1 expression was elevated in human peripheral artery disease requiring lower extremity bypass surgery. These findings demonstrate an essential physiologic role for Antxr1 in arteriogenesis and peripheral artery disease, with important implications for managing ischemia and other arteriogenesis-dependent vascular diseases.  相似文献   

16.
Cardiovascular and cerebrovascular disease represent the two most common causes of mortality and morbidity in western countries, and the treatment for these is generally by the mechanical restoration of blood flow in the affected tissues. Stimulation of collateral artery growth (arteriogenesis) provides a potential alternative option for the treatment of patients suffering from occlusive artery disease. Therefore, researchers have established several angiogenesis and arteriogenesis animal models to investigate basic mechanisms and pharmacological modulation of collateral artery growth. The authors highlight the most important aspects of vascular growth, discuss different methods and techniques for examining the process, and review the advantages and disadvantages associated with the animal models available for studying this phenomenon.  相似文献   

17.
Peripheral blood mononuclear cell (PBMNC) is one of powerful tools for therapeutic angiogenesis in hindlimb ischemia. However, traditional approaches with transplanted PBMNCs show poor therapeutic effects in severe ischemia patients. In this study, we used autograft models to determine whether hypoxic pretreatment effectively enhances the cellular functions of PBMNCs and improves hindlimb ischemia. Rabbit PBMNCs were cultured in the hypoxic condition. After pretreatment, cell adhesion, stress resistance, and expression of angiogenic factor were evaluated in vitro. To examine in vivo effects, we autografted preconditioned PBMNCs into a rabbit hindlimb ischemia model on postoperative day (POD) 7. Preconditioned PBMNCs displayed significantly enhanced functional capacities in resistance to oxidative stress, cell viability, and production of vascular endothelial growth factor. In addition, autologous transplantation of preconditioned PBMNCs significantly induced new vessels and improved limb blood flow. Importantly, preconditioned PBMNCs can accelerate vessel formation despite transplantation on POD 7, whereas untreated PBMNCs showed poor vascularization. Our study demonstrated that hypoxic preconditioning of PBMNCs is a feasible approach for increasing the retention of transplanted cells and enhancing therapeutic angiogenesis in ischemic tissue.  相似文献   

18.
Nitric oxide (NO) has been demonstrated to play an important role in angiogenesis, and also to be involved in collateral vessel growth. The expression of endothelial NO synthase (eNOS) is moderated partly by blood flow-induced mechanical factors, i.e., shear stress. The purpose of this study was to evaluate how the expression of eNOS correlates with the development of collateral vessels in dog heart, induced by chronic occlusion of the left circumflex artery. Immunoconfocal microscopy using an antibody against eNOS was used to detect expression of eNOS in different stages of arteriogenesis. Collateral vessels were classified into normal, growing and mature vessels by using the cytoskeleton marker desmin. Expression of the growth factors bFGF and metallproteinase-2 (MMP-2) was also examined. The data show that in normal arteriolar vessels, expression of eNOS is very low, but in growing collateral vessel there is a 6.2-fold increase, which, however, returned to normal levels in mature collateral vessels. The expression of eNOS was localized only in endothelium, either in normal or growing vessels. bFGF was very weakly stained in normal vessels, but highly expressed in growing collateral vessels. MMP-2 was strongly stained in neointima, but very weak in endothelium. In addition, we also examined expression of iNOS because iNOS may be induced in vessel injury or in disease states, but it was not detected in either normal or growing collateral vessels. Our findings indicate that the expression pattern of eNOS is closely associated with the development of collateral vessels, suggesting that eNOS plays an important role in arteriogenesis.  相似文献   

19.
BACKGROUND: Acidic fibroblast growth factor (FGF-1) has been identified as a potent mitogen for vascular cells, inducing formation of mature blood vessels in vitro and in vivo and represents one of the most promising approaches for the treatment of ischemic cardiovascular diseases by gene therapy. Nevertheless, and most probably due to the few experimental models able to address the issue, no study has described the therapeutic effects of FGF-1 gene transfer in subjects with peripheral arterial disease (PAD) exhibiting a clinically relevant cardiovascular pathology. METHODS: In order to assess the potency of FGF-1 gene transfer for therapeutic angiogenesis in ischemic skeletal muscles displaying decreased gene expression levels and sustained impaired formation of collateral vessels and arterioles, we developed a model of PAD in hamsters with a background of hypercholesterolemia. Hamsters fed a cholesterol-rich diet and subjected to hindlimb ischemia exhibit a sustained impaired angiogenic response, as evidenced by decreased angiographic score and histological quantification of arterioles in the ischemic muscles. RESULTS: In this model, we demonstrate that NV1FGF (a human FGF-1 expression plasmid), given intramuscularly 14 days after induction of hindlimb ischemia, promoted the formation of both collateral vessels and arterioles 14 days after treatment (i.e. 28 days post-ischemia). CONCLUSIONS: Our data provide evidence that NV1FGF can reverse the cholesterol-induced impairment of revascularization in a hamster model of hindlimb ischemia by promoting the growth of both collateral vessels and arterioles in ischemic muscles exhibiting significantly decreased levels of gene expression compared with control muscles. Therefore, this study underscores the relevance of NV1FGF gene therapy to overcome perfusion defects in patients with PAD.  相似文献   

20.
Catecholamine stimulation of alpha1-adrenoceptors exerts growth factor-like activity, mediated by generation of reactive oxygen species, on arterial smooth muscle cells and adventitial fibroblasts and contributes to hypertrophy and hyperplasia in models of vascular injury and disease. Adrenergic trophic activity also contributes to flow-mediated positive arterial remodeling by augmenting proliferation and leukocyte accumulation. To further examine this concept, we studied whether catecholamines contribute to collateral growth and angiogenesis in hindlimb insufficiency. Support for this hypothesis includes the above-mentioned studies, evidence that ischemia augments norepinephrine release from sympathetic nerves, and proposed involvement of reactive oxygen species in angiogenesis and collateral growth. Mice deficient in catecholamine synthesis [by gene deletion of dopamine beta-hydroxylase (DBH-/-)] were studied. At 3 wk after femoral artery ligation, increases in adductor muscle perfusion were similar in DBH-/- and wild-type mice, whereas recovery of plantar perfusion and calf microsphere flow were attenuated, although not significantly. Preexisting collaterals in adductor of wild-type mice showed increases in lumen diameter (60%) and medial and adventitial thickness (57 and 119%, P < 0.05 here and below). Lumen diameter increased similarly in DBH-/- mice (52%); however, increases in medial and adventitial thicknesses were reduced (30 and 65%). Leukocyte accumulation in the adventitia/periadventitia of collaterals was 39% less in DBH-/- mice. Increased density of alpha-smooth muscle actin-positive vessels in wild-type adductor (45%) was inhibited in DBH-/- mice (2%). Although both groups experienced similar atrophy in the gastrocnemius (approximately 22%), the increase in capillary-to-muscle fiber ratio in wild-type mice (21%) was inhibited in DBH-/- mice (7%). These data suggest that catecholamines may contribute to collateral growth and angiogenesis in tissue ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号