首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Myocardial stretch elicits a biphasic increase in developed force with a first rapid force response and a second slow force response (SFR). The rapid phase is due to an increase in myofilament Ca(2+) responsiveness; the SFR, analyzed here, is ascribed to a progressive increase in Ca(2+) transients. Experiments were performed in cat papillary muscles to further elucidate the signaling pathway underlying the SFR. Although the SFR was diminished by BQ-123, a similar endothelin (ET)-1-induced increase in force was not affected: 23 +/- 2 vs. 23 +/- 3% (not significant). Instead, BQ-123 suppressed the contractile effects of ET-2 or ET-3 (21 +/- 2 and 25 +/- 3% vs. -1 +/- 1 and -7 +/- 3% respectively, P < 0.05), suggesting that ET-2 or ET-3, but not ET-1, was involved in the SFR. Each isoform activated the Na(+)/H(+) exchanger (NHE-1), increasing intracellular Na(+) concentration by 2.0 +/- 0.1, 2.3 +/- 0.1, and 2.1 +/- 0.4 mmol/l for ET-1, ET-2, and ET-3, respectively (P < 0.05). The NHE-1 inhibitor HOE-642 prevented the increases in force and intracellular Na(+) concentration induced by all the ET isoforms, but only ET-2 and ET-3 effects were sensitive to BQ-123. Real-time RT-PCR measurements of prepro-ET-1, -ET-2, and -ET-3 were performed before and 5, 15, and 30 min after stretch. No changes in ET-1 or ET-2, but an increase of approximately 60% in ET-3, mRNA after 15 min of stretch were detected. Stretch-induced ET-3 mRNA upregulation and its mechanical counterpart were suppressed by AT(1) receptor blockade with losartan. These data suggest a role for AT(1)-mediated ET-3 released in the early activation of NHE-1 that follows myocardial stretch.  相似文献   

2.
This study investigated, in rabbit papillary muscles (n = 61) and human auricular strips (n = 7), effects of endothelin-1 (ET-1; 0.1-10 nM) on diastolic myocardial properties. ET-1 (1 nM) was also given in the presence of selective ET(A) or ET(B) antagonism, nonselective ET(A)/ET(B) antagonism, and Na(+)/H(+) exchanger inhibition. Effects of 6.3 mM Ca(2+) were also studied. ET-1 dose dependently increased inotropism. In contrast to baseline, in the presence of ET-1, resting tension (RT) decreased, after an isometric twitch, 3.4 +/- 1.4, 6.9 +/- 1.5, and 12.5 +/- 3.1% with 0.1, 1, and 10 nM, respectively, reflecting an increase in myocardial distensibility. ET-1 effects were abolished with selective ET(A) as well as with nonselective ET(A)/ET(B) antagonism, whereas they were still present with ET(B) antagonism. Na(+)/H(+) exchanger inhibition abolished ET-1 effects on distensibility, whereas it only partially inhibited positive inotropic effect. Ca(2+) increased inotropism to a similar extent to ET-1 (1 nM) but did not affect distensibility. ET-1 therefore increased diastolic distensibility of acutely loaded human and nonhuman myocardium. This effect is mediated by ET(A) receptors, requires Na(+)/H(+) exchanger activation, and cannot be elicited by Ca(2+).  相似文献   

3.
The aim was to find out the effects of endothelin-1 (ET-1) in salmon (Salmo salar) cardiac contractile and endocrine function and its possible interaction with beta-adrenergic regulation. We found that ET-1 has a positive inotropic effect in salmon heart. ET-1 (30 nM) increased the contraction amplitude 17+/-4.7% compared with the basal level. beta-Adrenergic activation (isoprenaline, 100 nM) increased contraction amplitude 30+/-13.1%, but it did not affect the contractile response to ET-1. ET-1 (10 nM) stimulated the secretion of salmon cardiac natriuretic peptide (sCP) from isolated salmon ventricle (3.3+/-0.14-fold compared with control) but did not have any effect on ventricular sCP mRNA. Isoprenaline alone (0.1-1,000 nM) did not stimulate sCP release, but ET-1 (10 nM) together with isoprenaline (0.1 nM) caused a significantly greater increase of sCP release than ET-1 alone (5.4+/-0.07 vs. 3.3+/-0.14 times increase compared with control). The effects on the contractile and secretory function could be inhibited by a selective ETA-receptor antagonist BQ-610 (1 microM), whereas ETB-receptor blockage (by 100 nM BQ-788) enhanced the secretory response. Thus ET-1 is a phylogenetically conserved regulator of cardiac function, which has synergistic action with beta-adrenergic stimulation. The modulatory effects of ET-1 may therefore be especially important in situations with high beta-adrenergic tone.  相似文献   

4.
Mechanisms underlying the negative inotropic response to alpha-adrenoceptor stimulation in adult mouse ventricular myocardium were studied. In isolated ventricular tissue, phenylephrine (PE), in the presence of propranolol, decreased contractile force by approximately 40% of basal value. The negative inotropic response was similarly observed under low extracellular Ca(2+) concentration ([Ca(2+)](o)) conditions but was significantly smaller under high-[Ca(2+)](o) conditions and was not observed under low-[Na(+)](o) conditions. The negative inotropic response was not affected by nicardipine, ryanodine, ouabain, or dimethylamiloride (DMA), inhibitors of L-type Ca(2+) channel, Ca(2+) release channel, Na(+)-K(+) pump, or Na(+)/H(+) exchanger, respectively. KB-R7943, an inhibitor of Na(+)/Ca(2+) exchanger, suppressed the negative inotropic response mediated by PE. PE reduced the magnitude of postrest contractions. PE caused a decrease in duration of the late plateau phase of action potential and a slight increase in resting membrane potential; time courses of these effects were similar to that of the negative inotropic effect. In whole cell voltage-clamped myocytes, PE increased the L-type Ca(2+) and Na(+)/Ca(2+) exchanger currents but had no effect on the inwardly rectifying K(+), transient outward K(+), or Na(+)-K(+)-pump currents. These results suggest that the sustained negative inotropic response to alpha-adrenoceptor stimulation of adult mouse ventricular myocardium is mediated by enhancement of Ca(2+) efflux through the Na(+)/Ca(2+) exchanger.  相似文献   

5.
DMA增加正常大鼠心肌细胞钙瞬变和收缩   总被引:13,自引:5,他引:8  
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2002,54(3):219-224
实验观察了钠氢交换或钠钙交换抑制剂 5 (N ,N 二甲基 )氨氯吡咪 (DMA)对正常和心肌肥厚大鼠分离心室肌细胞钙瞬变和细胞收缩的影响。通过负载荧光染料Fura 2 /Am ,应用离子影像分析系统 (IonImagingSystem)同步测定离体大鼠心肌细胞钙瞬变和细胞长度。结果表明 :DMA 10 μmol/L分别使钙瞬变和细胞缩短从对照组的 2 0 9.6 0± 5 4.96和 3.0 7± 0 .97μm增加到 2 38.5 0± 80 .41和 4.0 7± 1.0 2 μm (P <0 .0 5 ,n =7)。应用特异性反向钠钙交换阻断剂KB R7943可完全阻断DMA的激动作用。DMA还可使尼卡地平抑制L 型钙通道后的钙瞬变和细胞收缩增加。在肥厚心肌细胞 ,DMA表现出相同的药理作用 ,但对钙瞬变和细胞缩短的刺激作用更强。结果表明 :DMA可通过反向钠钙交换途径增加正常和肥厚大鼠心肌细胞钙瞬变和细胞收缩 ,且对肥厚心肌细胞的影响比对正常心肌细胞大。  相似文献   

6.
Airway smooth muscle (ASM) contracts partly due to an increase in cytosolic Ca(2+). In this work, we found that the contraction caused by histamine depends on external Na(+), possibly involving nonselective cationic channels (NSCC) and the Na(+)/Ca(2+) exchanger (NCX). We performed various protocols using isometric force measurement of guinea pig tracheal rings stimulated by histamine. We observed that force reached 53 +/- 1% of control during external Na(+) substitution by N-methyl-D-glucamine(+), whereas substitution by Li(+) led to no significant change (91 +/- 1%). Preincubation with KB-R7943 decreased the maximal force developed (52.3 +/- 5.6%), whereas preincubation with nifedipine did not (89.7 +/- 1.8%). Also, application of the nonspecific NCX blocker KB-R7943 and nifedipine on histamine-precontracted tracheal rings reduced force to 1 +/- 3%, significantly different from nifedipine alone (49 +/- 6%). Moreover, nonspecific NSCC inhibitors SKF-96365 and 2-aminoethyldiphenyl borate reduced force to 1 +/- 1% and 19 +/- 7%, respectively. Intracellular Ca(2+) measurements in isolated ASM cells showed that KB-R7943 and SKF-96365 reduced the peak and sustained response to histamine (0.20 +/- 0.1 and 0.19 +/- 0.09 for KB-R, 0.43 +/- 0.16 and 0.47 +/- 0.18 for SKF, expressed as mean of differences). Moreover, Na(+)-free solution only inhibited the sustained response (0.54 +/- 0.25). These data support an important role for NSCC and NCX during histamine stimulation. We speculate that histamine induces Na(+) influx through NSCC that promotes the Ca(2+) entry mode of NCX and Ca(V)1.2 channel activation, thereby causing contraction.  相似文献   

7.
An increase in coronary perfusion pressure leads to increased cardiac contractility, a phenomenon known as the Gregg effect. Exogenous endothelin (ET)-1 exerts a positive inotropic effect; however, the role of endogenous ET-1 in the contractile response to elevated load is unknown. We characterized here the role of ETA and ETB receptors in regulation of contractility in isolated, perfused mouse hearts subjected to increased coronary flow. Elevation of coronary flow from 2 to 5 ml/min resulted in 80 +/- 10% increase in contractile force (P < 0.001). BQ-788 (ETB receptor antagonist) augmented the load-induced contractile response by 35% (P < 0.05), whereas bosentan (ETA/B receptor antagonist) and BQ-123 (ETA receptor antagonist) attenuated it by 34% and 56%, respectively (P < 0.05). CV-11974 (ANG II type 1 receptor antagonist) did not modify the increase in contractility. These results show that endogenous ET-1 is a key mediator of the Gregg effect in mouse hearts. Moreover, ET-1 has a dual role in the regulation of cardiac contractility: ETA receptor-mediated increase in contractile force is suppressed by ETB receptors.  相似文献   

8.
Activation of the Na(+)/H(+) exchanger may play an important role in the development of cardiac hypertrophy. Isolated ventricular myocyte studies have suggested that angiotensin II (AII) has direct positive inotropic effect caused by intracellular alkalinization due to increased Na(+)/H(+) exchange, but whether this occurs in the whole heart is unknown. Consequently, we have used non-invasive 31P NMR spectroscopy to determine whether AII stimulation alters energetics or intracellular pH (pH(i)) in the intact beating rabbit heart. Heart rate (HR) and developed pressure (DP) were recorded continuously in isolated perfused rabbit hearts, simultaneously with pH(i) and high energy phosphate metabolite levels measured using 31P NMR spectroscopy. AII (11 nM) increased developed pressure by 14+/-2 mmHg (P<0.05) and increased pH(i) by 0.08+/-0.03 pH units (P<0.05, n=6). There were no significant changes in myocardial phosphocreatine (PCr), ATP or Pi concentrations throughout the protocol. Inhibition of Na(+)/H(+) exchange with 1 microM Hoe642 (n=7) abolished the increase in pH(i), but did not prevent the increase in developed pressure, caused by AII. Inhibition of protein kinase C (PKC) using 25 microM chelerythrine chloride prevented the positive inotropic and alkalinizing effects of AII (n=5). We conclude that the positive inotropic effect of AII is associated with, but not caused by, a decreased proton concentration due to stimulation of Na(+)/H(+) exchange in the whole rabbit heart.  相似文献   

9.
The data presented in this work suggest that in human umbilical artery (HUA) smooth muscle cells, the Na(+)/Ca(2+) exchanger (NCX) is active and working in the reverse mode. This supposition is based on the following results: (i) microfluorimetry in HUA smooth muscle cells in situ showed that a Ca(2+)-free extracellular solution diminished intracellular Ca(2+) ([Ca(2+)](i)), and KB-R7943 (5microM), a specific inhibitor of the Ca(2+) entry mode of the exchanger, also decreased [Ca(2+)](i) (40.6+/-4.5% of Ca(2+)-free effect); (ii) KB-R7943 produced the relaxation of HUA rings (-24.7+/-7.3gF/gW, n=8, p<0.05); (iii) stimulation of the NCX by lowering extracellular Na(+) increases basal [Ca(2+)](i) proportionally to Na(+) reduction (Delta fluorescence ratio=0.593+/-0.141 for Na(+)-free solution, n=8) and HUA rings' contraction (peak force=181.5+/-39.7 for 130mM reduction, n=8), both inhibited by KB-R7943 and a Ca(2+)-free extracellular solution. In conclusion, the NCX represents an important Ca(2+) entry route in HUA smooth muscle cells.  相似文献   

10.
We have examined the distribution of ryanodine receptors, L-type Ca(2+) channels, calsequestrin, Na(+)/Ca(2+) exchangers, and voltage-gated Na(+) channels in adult rat ventricular myocytes. Enzymatically dissociated cells were fixed and dual-labeled with specific antibodies using standard immunocytochemistry protocols. Images were deconvolved to reverse the optical distortion produced by wide-field microscopes equipped with high numerical aperture objectives. Every image showed a well-ordered array of fluorescent spots, indicating that all of the proteins examined were distributed in discrete clusters throughout the cell. Mathematical analysis of the images revealed that dyads contained only ryanodine receptors, L-type Ca(2+) channels, and calsequestrin, and excluded Na(+)/Ca(2+) exchangers and voltage-gated Na(+) channels. The Na(+)/Ca(2+) exchanger and voltage-gated Na(+) channels were distributed largely within the t-tubules, on both transverse and axial elements, but were not co-localized. The t-tubule can therefore be subdivided into at least three structural domains; one of coupling (dyads), one containing the Na(+)/Ca(2+) exchanger, and one containing voltage-gated Na(+) channels. We conclude that if either the slip mode conductance of the Na(+) channel or the reverse mode of the Na(+)/Ca(2+) exchanger are to contribute to the contractile force, the fuzzy space must extend outside of the dyad.  相似文献   

11.
Mice have been increasingly used as models for investigating cardiovascular diseases. However, the responsiveness of mouse vasculature to endothelin (ET)-1 has not been clearly established. The goal of this study was to determine the role of ET receptors (ET(A) and ET(B)) in mouse vessels using isometric force measurements. Results showed that in the abdominal aorta ET-1 induced a concentration-dependent contraction (EC(50): 1.4 nM) with maximum reaching 89.5 +/- 4.9% (10 nM) of that induced by 60 mM K(+) [with nitric oxide synthase (NOS) inhibitor N(omega)-nitro-l-arginine methyl ester (l-NAME)]. However, in the thoracic aorta or the carotid artery, ET-1 was poorly effective. RT-PCR revealed that in the endothelium-denuded abdominal aorta, the PCR product for ET(B) receptors was very low compared with ET(A). Similarly in tissues treated with l-NAME, the ET(B) receptor-specific agonist sarafotoxin 6c (S6c; 100 nM) induced only a minimal contraction (<5%). Meanwhile, the ET(A) antagonist BQ-123 (1 microM) completely inhibited the maximum ET-1 (10 nM) contractile response. Furthermore, we found that in the abdominal aorta that had not been treated with l-NAME, ET-1-induced contraction significantly decreased. However, in such specimens, S6c was unable to induce any relaxation on phenylephrine-induced contraction. These results indicate that the role of ET receptors differs considerably among mouse vessels. In the abdominal aorta, ET(A) receptor mediates a potent vasoconstrictor response, whereas ET(B) has, if any, only a minimal functional presence. Also, our data suggest that ET-1 might involve a NOS-dependent vasodilation in the abdominal aorta, which remains to be further defined.  相似文献   

12.
Regulation of cellular Mg(2+) levels by insulin has been shown in various tissues. However, the mechanisms for hormonal regulation of cellular Mg(2+) have not been well described. We studied the effect of insulin on Na(+)/Mg(2+) exchange in normal human cells, measuring Na(+)/Mg(2+) exchange activity as net total Mg(2+) efflux driven by an inward Na(+) gradient in Mg(2+)-loaded red blood cells (RBCs). Na(+)/Mg(2+) exchange was increased significantly by the addition of 2.4 nmol/L of insulin to the flux medium (from 0.60 +/- 0.06 mmol/L cell x h to 0.75 +/- 0.08 mmol/L cell x h [P = 0.0098, n = 44]). A dose-response curve for the effects of insulin on the exchanger activity gave an estimated EC(50) for insulin of 0.95 +/- 0.31 nmol/L and a V(max) of 0.86 +/- 0.12 mmol/L cell x h (n = 7). Kinetics of the Na(+)/Mg(2+) exchange were characterized by measuring its activity as a function of Mg(2+) and Na(+) concentrations. The K(0.5) for cellular Mg(2+) was not affected by incubation with insulin. However, the K(0.5) for extracellular Na(+) decreased from 69.9 +/- 6.3 to 40.3 +/- 8.4 mol/L (n = 5, P = 0.03) in the presence of insulin. We also studied the effect of wortmannin (WT), a PI 3-kinase inhibitor, on activity of the exchanger. WT significantly blocked the insulin-stimulated Na(+)/Mg(2+) activity (n = 6, P = 0.048), with an IC(50) of 0.5 nmol/L. LY294002, another PI 3-kinase inhibitor, likewise blocked the insulin-stimulated activity of the exchanger. Therefore, insulin regulates cellular Mg(2+) metabolism in part via an increase in the affinity for Na(+) of the Na(+)/Mg(2+) exchange and PI 3-kinase activation, suggesting another role for the PI 3-kinase pathway in insulin-mediated cellular events.  相似文献   

13.
We have shown before that Na(+)/K(+)-ATPase acts as a signal transducer, through protein-protein interactions, in addition to being an ion pump. Interaction of ouabain with the enzyme of the intact cells causes activation of Src, transactivation of EGFR, and activation of the Ras/ERK1/2 cascade. To determine the role of protein kinase C (PKC) in this pathway, neonatal rat cardiac myocytes were exposed to ouabain and assayed for translocation/activation of PKC from cytosolic to particulate fractions. Ouabain caused rapid and sustained stimulation of this translocation, evidenced by the assay of Ca(2+)-dependent and Ca(2+)-independent PKC activities and by the immunoblot analysis of the alpha, delta, and epsilon isoforms of PKC. Dose-dependent stimulation of PKC translocation by ouabain (1-100 microm) was accompanied by no more than 50% inhibition of Na(+)/K(+)-ATPase and doubling of [Ca(2+)](i), changes that do not affect myocyte viability and are known to be associated with positive inotropic, but not toxic, effects of ouabain in rat cardiac ventricles. Ouabain-induced activation of ERK1/2 was blocked by PKC inhibitors calphostin C and chelerythrine. An inhibitor of phosphoinositide turnover in myocytes also antagonized ouabain-induced PKC translocation and ERK1/2 activation. These and previous findings indicate that ouabain-induced activation of PKC and Ras, each linked to Na(+)/K(+)-ATPase through Src/EGFR, are both required for the activation of ERK1/2. Ouabain-induced PKC translocation and ERK1/2 activation were dependent on the presence of Ca(2+) in the medium, suggesting that the signal-transducing and ion-pumping functions of Na(+)/K(+)-ATPase cooperate in activation of these protein kinases and the resulting regulation of contractility and growth of the cardiac myocyte.  相似文献   

14.
The present study was aimed at evaluating the role of D(1)- and D(2)-like receptors and investigating whether inhibition of Na(+) transepithelial flux by dopamine is primarily dependent on inhibition of the apical Na(+)/H(+) exchanger, inhibition of the basolateral Na(+)-K(+)-ATPase, or both. The data presented here show that opossum kidney cells are endowed with D(1)- and D(2)-like receptors, the activation of the former, but not the latter, accompanied by stimulation of adenylyl cyclase (EC(50) = 220 +/- 2 nM), marked intracellular acidification (IC(50) = 58 +/- 2 nM), and attenuation of amphotericin B-induced decreases in short-circuit current (28.6 +/- 4.5% reduction) without affecting intracellular pH recovery after CO(2) removal. These results agree with the view that dopamine, through the activation of D(1)- but not D(2)-like receptors, inhibits both the Na(+)/H(+) exchanger (0.001933 +/- 0.000121 vs. 0.000887 +/- 0.000073 pH unit/s) and Na(+)-K(+)-ATPase without interfering with the Na(+)-independent HCO transporter. It is concluded that dopamine, through the action of D(1)-like receptors, inhibits both the Na(+)/H(+) exchanger and Na(+)-K(+)-ATPase, but its marked acidifying effects result from inhibition of the Na(+)/H(+) exchanger only, without interfering with the Na(+)-independent HCO transporter and Na(+)-K(+)-ATPase.  相似文献   

15.
The activities of both sarcolemmal (SL) Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg.kg(-1).day(-1)), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities. Protein content and mRNA levels for Na(+)/Ca(2+) exchanger as well as Na(+)-K(+)-ATPase alpha(1)-, alpha(2)- and beta(1)-isoforms were depressed, whereas those for alpha(3)-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the failing heart by preventing changes in gene expression for SL proteins.  相似文献   

16.
Huang SC 《Regulatory peptides》2003,113(1-3):131-138
Endothelin (ET) causes contraction of the gallbladder. To investigate effects of ET in the common bile duct, we measured contraction of longitudinal muscle strips from guinea pig common bile ducts induced by ET-related peptides and binding of 125I-ET-1 to cell membranes prepared from the common bile duct. Visualization of 125I-ET-1 binding sites in tissue was performed by autoradiography. ET-1 caused tetrodotoxin and atropine-insensitive contraction. In terms of maximal tension of contraction, ET-1, ET-2 and ET-3 were equal in efficacy. However, sarafotoxin S6c, a selective ET(B) receptor agonist, caused only a negligible contraction. The relative potencies for ET isopeptides to cause contraction were ET-1=ET-2>ET-3. The ET-1-induced contraction was inhibited by BQ-123, an ET(A)-receptor-selective antagonist, but not by BQ-788, an ET(B)-receptor-selective antagonist. In addition, the combination of both antagonists, BQ-123 and BQ-788, inhibited ET-1 induced contraction but did not potentiate the inhibition caused by BQ-123 alone. These indicate that ET(A) but not ET(B) receptors mediate the contraction. Autoradiography localized 125I-ET-1 binding to the smooth muscle layer. Binding of 125I-ET-1 to the smooth muscle cell membranes was saturable and specific. Analysis of dose-inhibition curves indicated the presence of ET(A) and ET(B) receptors. These results demonstrate that ET causes contraction of longitudinal muscle of the common bile duct. Different from the gallbladder, which possesses both ET(A) and ET(B) receptors cooperating to mediate muscle contraction, the common bile duct possesses two classes of ET receptors, but only the ET(A) receptor mediates the contraction.  相似文献   

17.
A rise in intracellular calcium concentration ([Ca(2+)](i)) is necessary for platelet activation. A major component of the [Ca(2+)](i) elevation occurs through store-operated Ca(2+) entry (SOCE). The aim of this study was to understand the contribution of the classical PKC isoform, PKCα to platelet SOCE, using platelets from PKCα-deficient mice. SOCE was reduced by approximately 50% in PKCα(-/-) platelets, or following treatment with bisindolylmaleimide I, a PKC inhibitor. However, TG-induced Mn(2+) entry was unaffected, which suggests that divalent cation entry through store-operated channels is not directly regulated. Blocking the autocrine action of secreted ADP or 5-HT on its receptors did not reproduce the effect of PKCα deficiency. In contrast, SN-6, a Na(+)/Ca(2+) exchanger inhibitor, did reduce SOCE to the same extent as loss of PKCα, as did replacing extracellular Na(+) with NMDG(+). These treatments had no further effect in PKCα(-/-) platelets. These data suggest that PKCα enhances the extent of SOCE in mouse platelets by regulating Ca(2+) entry through the Na(+)/Ca(2+) exchanger.  相似文献   

18.
Endothelin (ET) causes contraction of the muscularis mucosae in the guinea pig esophagus, but its role in the human esophagus remains unknown. To investigate effects of ET in the human esophagus, we measured contraction of isolated human esophageal muscularis mucosae strips caused by ET related peptides and binding of 125I-ET-1 to cell membranes prepared from the human esophageal muscularis mucosae. Autoradiography demonstrated specific binding of 125I-ET-1 to the muscularis mucosae and muscularis propria (muscularis externa) of the human esophagus. ET-1 caused tetrodotoxin and atropine-insensitive contraction of muscularis mucosae strips. In terms of the maximal tension of contraction, ET-1 and ET-2 were equal in efficacy. The relative potencies for ET related peptides to cause contraction were ET-1=ET-2>ET-3>sarafotoxin S6c (SX6c), an ETB receptor agonist. ET-1 caused contraction was mildly inhibited by BQ-123, an ETA receptor antagonist, and not by BQ-788, an ETB receptor antagonist. It was moderately inhibited by the combination of both antagonists, indicating synergistic inhibition. Furthermore, desensitization to SX6c with SX6c pretreatment failed to abolish the contractile response to ET-1, which was completely inhibited by BQ-123. These indicate the involvement of both ETA and ETB receptors in the contraction. Binding of 125I-ET-1 to cell membranes of the muscularis mucosae was saturable and specific. Analysis of dose-inhibition curves demonstrated the presence of ETA and ETB receptors. This study demonstrates that, the muscularis mucosae of the human esophagus, similar to that of the guinea pig esophagus, possesses both ETA and ETB receptors mediating muscle contraction.  相似文献   

19.
Zhao HC  Wu DM  Cui XL  Wu BW 《生理学报》2004,56(4):476-480
本文采用大鼠乳头肌张力测定及离体心脏灌流技术,研究大鼠心肌Na -Ca2 交换对乳头肌及离体灌流心肌变力性的影响。采用大鼠特异性Na -Ca2 交换激动剂E-4031能剂量依赖性地增加大鼠乳头肌的发展张力(P<0.05,n=6)及离体心脏的心泵功能(P<0.05,n=4);特异性Na -Ca2 交换抑制剂KB-R7943具有相反的效应,并可完全消除E-4031引起的正性变力作用。哇巴因(ouabain,0.5μmol/L)与E-4031(3μmol/L)联合使用,可使乳头肌发展张力由单独使用哇巴因时的0.25±0.03 g升高至0.29±0.04g(P<0.05,n=6);联合用药对大鼠离体心脏心泵功能的影响也强于哇巴因单独作用的效果。本研究结果证实,E-4031通过增强心肌Na -Ca2 交换,对大鼠乳头肌和离体心脏产生正性变力作用;与哇巴因合用时,它们的正性变力作用有相加作用。  相似文献   

20.
Excitation-contraction (E-C) coupling was investigated in rat hearts 6 wk after induction of myocardial infarction (MI) by ligation of the left coronary artery. Heart weight was increased by 74% and left ventricular end-diastolic pressure was 23 +/- 2 mmHg in MI compared with 8 +/- 2 mmHg in sham-operated controls (Sham, P < 0.001). Cell shortening was measured in voltage-clamped myocytes at 36 degrees C. In solutions where Cs(+) had been replaced by K(+), the voltage dependence of contraction was sigmoidal between -20 and +100 mV in Sham and MI cells. Verapamil (20 microM) blocked L-type Ca(2+) current and reduced contraction in Sham cells by approximately 50% (P < 0.01) but did not decrease contraction significantly in MI cells at test potentials above +10 mV. Verapamil-insensitive contractions were blocked by Ni(2+) (5 mM). Na(+)/Ca(2+) exchange current was doubled in MI compared with Sham cells at test potentials between -20 and +80 mV (P < 0.05), whereas mRNA and protein expression increased by 30-40%. Finally, voltage dependence of contraction was bell shaped in Na(+)-free solutions, but contraction was significantly increased in MI cells over a wider voltage range (P < 0.05). The insensitivity to Ca(2+) channel block in MI cells may result from an increased contribution of the Na(+)/Ca(+) exchanger to triggering of E-C coupling. These results suggest significant changes in E-C coupling in the hypertrophy and failure that develop in response to extensive MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号