首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
Intrinsically disordered proteins are an important class of proteins with unique functions and properties. Here, we have applied a support vector machine (SVM) trained on naturally occurring disordered and ordered proteins to examine the contribution of various parameters (vectors) to recognizing proteins that contain disordered regions. We find that a SVM that incorporates only amino acid composition has a recognition accuracy of 87+/-2%. This result suggests that composition alone is sufficient to accurately recognize disorder. Interestingly, SVMs using reduced sets of amino acids based on chemical similarity preserve high recognition accuracy. A set as small as four retains an accuracy of 84+/-2%; this suggests that general physicochemical properties rather than specific amino acids are important factors contributing to protein disorder.  相似文献   

3.
The structural annotation of proteins with no detectable homologs of known 3D structure identified using sequence‐search methods is a major challenge today. We propose an original method that computes the conditional probabilities for the amino‐acid sequence of a protein to fit to known protein 3D structures using a structural alphabet, known as “Protein Blocks” (PBs). PBs constitute a library of 16 local structural prototypes that approximate every part of protein backbone structures. It is used to encode 3D protein structures into 1D PB sequences and to capture sequence to structure relationships. Our method relies on amino acid occurrence matrices, one for each PB, to score global and local threading of query amino acid sequences to protein folds encoded into PB sequences. It does not use any information from residue contacts or sequence‐search methods or explicit incorporation of hydrophobic effect. The performance of the method was assessed with independent test datasets derived from SCOP 1.75A. With a Z‐score cutoff that achieved 95% specificity (i.e., less than 5% false positives), global and local threading showed sensitivity of 64.1% and 34.2%, respectively. We further tested its performance on 57 difficult CASP10 targets that had no known homologs in PDB: 38 compatible templates were identified by our approach and 66% of these hits yielded correctly predicted structures. This method scales‐up well and offers promising perspectives for structural annotations at genomic level. It has been implemented in the form of a web‐server that is freely available at http://www.bo‐protscience.fr/forsa .  相似文献   

4.
Protein sequence world is considerably larger than structure world. In consequence, numerous non-related sequences may adopt similar 3D folds and different kinds of amino acids may thus be found in similar 3D structures. By grouping together the 20 amino acids into a smaller number of representative residues with similar features, sequence world simplification may be achieved. This clustering hence defines a reduced amino acid alphabet (reduced AAA). Numerous works have shown that protein 3D structures are composed of a limited number of building blocks, defining a structural alphabet. We previously identified such an alphabet composed of 16 representative structural motifs (5-residues length) called Protein Blocks (PBs). This alphabet permits to translate the structure (3D) in sequence of PBs (1D). Based on these two concepts, reduced AAA and PBs, we analyzed the distributions of the different kinds of amino acids and their equivalences in the structural context. Different reduced sets were considered. Recurrent amino acid associations were found in all the local structures while other were specific of some local structures (PBs) (e.g Cysteine, Histidine, Threonine and Serine for the alpha-helix Ncap). Some similar associations are found in other reduced AAAs, e.g Ile with Val, or hydrophobic aromatic residues Trp with Phe and Tyr. We put into evidence interesting alternative associations. This highlights the dependence on the information considered (sequence or structure). This approach, equivalent to a substitution matrix, could be useful for designing protein sequence with different features (for instance adaptation to environment) while preserving mainly the 3D fold.  相似文献   

5.
To date, explanations for the origin and emergence of the alphabet of amino acids encoded by the standard genetic code have been largely qualitative and speculative. Here, with the help of computational chemistry, we present the first quantitative exploration of nature's “choices” set against various models for plausible alternatives. Specifically, we consider the chemical space defined by three fundamental biophysical properties (size, charge, and hydrophobicity) to ask whether the amino acids that entered the genetic code exhibit a higher diversity than random samples of similar size drawn from several different definitions of amino acid possibility space.We found that in terms of the properties studied, the full, standard set of 20 biologically encoded amino acids is indeed significantly more diverse than an equivalently sized group drawn at random from the set of plausible, prebiotic alternatives (using the Murchison meteorite as a model for pre-biotic plausibility). However, when the set of possible amino acids is enlarged to include those that are produced by standard biosynthetic pathways (reflecting the widespread idea that many members of the standard alphabet were recruited in this way), then the genetically encoded amino acids can no longer be distinguished as more diverse than a random sample. Finally, if we turn to consider the overlap between biologically encoded amino acids and those that are prebiotically plausible, then we find that the biologically encoded subset are no more diverse as a group than would be expected from a random sample, unless the definition of “random sample” is adjusted to reflect possible prebiotic abundance (again, using the contents of the Murchison meteorite as our estimator). This final result is contingent on the accuracy of our computational estimates for amino acid properties, and prebiotic abundances, and an exploration of the likely effect of errors in our estimation reveals that our results should be treated with caution. We thus present this work as a first step in quantifying and thus testing various origin-of-life hypotheses regarding the origin and evolution of life's amino acid alphabet, and advocate the progress that would add valuable information in the future.  相似文献   

6.
Inter-residue potentials are extensively used in the design and evaluation of protein structures. However,dealing with all (20 x 20) interactions becomes computationally difficult in extensive investigations. Hence, it is desirable to reduce the alphabet of 20 amino acids to a smaller number. Currently, several methods of reducing the residue types exist; however a critical assessment of these methods is not available. Towards this goal,here we review and evaluate different methods by comparing with the complete (20 x 20) matrix of Miyazawa-Jernigan potential, including a method of grouping adopted by us, based on multi dimensional scaling (MDS). The second goal of this paper is the computation of inter-residue interaction energies for the reduced amino acid alphabet, which has not been explicitly addressed in the literature until now. By using a least squares technique, we present a systematic method of obtaining the interaction energy values for any type of grouping scheme that reduces the amino acid alphabet. This can be valuable in designing the protein structures.  相似文献   

7.
Inter-residue potentials are extensively used in the design and evaluation of protein structures. However, dealing with all (20×20) interactions becomes computationally difficult in extensive investigations. Hence, it is desirable to reduce the alphabet of 20 amino acids to a smaller number. Currently, several methods of reducing the residue types exist; however a critical assessment of these methods is not available. Towards this goal, here we review and evaluate different methods by comparing with the complete (20×20) matrix of Miyazawa-Jernigan potential, including a method of grouping adopted by us, based on multi dimensional scaling (MDS). The second goal of this paper is the computation of inter-residue interaction energies for the reduced amino acid alphabet, which has not been explicitly addressed in the literature until now. By using a least squares technique, we present a systematic method of obtaining the interaction energy values for any type of grouping scheme that reduces the amino acid alphabet. This can be valuable in designing the protein structures.  相似文献   

8.
Heat shock proteins (HSPs) are a type of functionally related proteins present in all living organisms, both prokaryotes and eukaryotes. They play essential roles in protein–protein interactions such as folding and assisting in the establishment of proper protein conformation and prevention of unwanted protein aggregation. Their dysfunction may cause various life-threatening disorders, such as Parkinson’s, Alzheimer’s, and cardiovascular diseases. Based on their functions, HSPs are usually classified into six families: (i) HSP20 or sHSP, (ii) HSP40 or J-class proteins, (iii) HSP60 or GroEL/ES, (iv) HSP70, (v) HSP90, and (vi) HSP100. Although considerable progress has been achieved in discriminating HSPs from other proteins, it is still a big challenge to identify HSPs among their six different functional types according to their sequence information alone. With the avalanche of protein sequences generated in the post-genomic age, it is highly desirable to develop a high-throughput computational tool in this regard. To take up such a challenge, a predictor called iHSP-PseRAAAC has been developed by incorporating the reduced amino acid alphabet information into the general form of pseudo amino acid composition. One of the remarkable advantages of introducing the reduced amino acid alphabet is being able to avoid the notorious dimension disaster or overfitting problem in statistical prediction. It was observed that the overall success rate achieved by iHSP-PseRAAAC in identifying the functional types of HSPs among the aforementioned six types was more than 87%, which was derived by the jackknife test on a stringent benchmark dataset in which none of HSPs included has ?40% pairwise sequence identity to any other in the same subset. It has not escaped our notice that the reduced amino acid alphabet approach can also be used to investigate other protein classification problems. As a user-friendly web server, iHSP-PseRAAAC is accessible to the public at http://lin.uestc.edu.cn/server/iHSP-PseRAAAC.  相似文献   

9.
Glutamate is an important excitatory amino acid at many central nervous system synapses. After its release from presynaptic nerve terminals, glutamate transiently binds to specific neuronal membrane receptors, which transduce its signal by the generation of intracellular second messengers before being rapidly cleared from the synapse. However, during ischemia, the glutamate concentration at synapses surrounding the focal lesion can be increased for sustained periods of time, resulting in abusive stimulation of glutamate receptors that can eventually be neurotoxic. To develop drugs capable of selectively blocking the pathological effects of glutamate in neurons surrounding ischemic lesions while leaving the physiological actions of glutamate in nonlesioned areas of the brain unaffected, it is essential to delineate glutamate-induced intracellular events that are specific to receptor abuse. This article describes the intracellular sequelae of physiological and pathological glutamate receptor activation and suggests potential targets for such receptor abuse-dependent antagonists (RADAs).  相似文献   

10.
Double-wide pyrimidine bases can assemble into helical, sequence-specific DNA complexes.  相似文献   

11.
12.
Lisewski AM 《PloS one》2008,3(9):e3110
The transmission of genomic information from coding sequence to protein structure during protein synthesis is subject to stochastic errors. To analyze transmission limits in the presence of spurious errors, Shannon's noisy channel theorem is applied to a communication channel between amino acid sequences and their structures established from a large-scale statistical analysis of protein atomic coordinates. While Shannon's theorem confirms that in close to native conformations information is transmitted with limited error probability, additional random errors in sequence (amino acid substitutions) and in structure (structural defects) trigger a decrease in communication capacity toward a Shannon limit at 0.010 bits per amino acid symbol at which communication breaks down. In several controls, simulated error rates above a critical threshold and models of unfolded structures always produce capacities below this limiting value. Thus an essential biological system can be realistically modeled as a digital communication channel that is (a) sensitive to random errors and (b) restricted by a Shannon error limit. This forms a novel basis for predictions consistent with observed rates of defective ribosomal products during protein synthesis, and with the estimated excess of mutual information in protein contact potentials.  相似文献   

13.
A new method for enhancing peptide ion identification in proteomics analyses using ion mobility data is presented. Ideally, direct comparisons of experimental drift times (t(D)) with a standard mobility database could be used to rank candidate peptide sequence assignments. Such a database would represent only a fraction of sequences in protein databases and significant difficulties associated with the verification of data for constituent peptide ions would exist. A method that employs intrinsic amino acid size parameters to obtain ion mobility predictions that can be used to rank candidate peptide ion assignments is proposed. Intrinsic amino acid size parameters have been determined for doubly charged peptide ions from an annotated yeast proteome. Predictions of ion mobilities using the intrinsic size parameters are more accurate than those obtained from a polynomial fit to t(D) versus molecular weight data. More than a 2-fold improvement in prediction accuracy has been observed for a group of arginine-terminated peptide ions 12 residues in length. The use of this predictive enhancement as a means to aid peptide ion identification is discussed, and a simple peptide ion scoring scheme is presented.  相似文献   

14.
From one amino acid to another: tRNA-dependent amino acid biosynthesis   总被引:2,自引:0,他引:2  
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.  相似文献   

15.
J L Weaver  R W Williams 《Biopolymers》1990,30(5-6):593-597
Raman spectra of series of aqueous solutions of peptides containing two amino acids, glycine-X, alanine-X, and serine-X, where X is an uncharged amino acid, show that the amide III band shifts systematically to lower frequencies as the side chain of the X amino acid becomes larger. The range of this shift is about 20 cm-1, starting at 1275 cm-1 for alanine-glycine and moving to 1251 cm-1 for alanine-tryptophan, with a correlation coefficient of 0.93 with the mass of the X amino acid side chain for 10 peptides. The amide I frequencies remain constant as the X amino acid is changed. This shift may result from a change in the average conformational preference of the peptide, a change in vibrational coupling of the amide III modes with the X amino acid side chain, a change in molecular force constants, or a combination of these. These results present a test for computational methods.  相似文献   

16.
A number of investigators have addressed the issue of why certain protein structures are especially common by considering structure designability, defined as the number of sequences that would successfully fold into any particular native structure. One such approach, based on foldability, suggested that structures could be classified according to their maximum possible foldability and that this optimal foldability would be highly correlated with structure designability. Other approaches have focused on computing the designability of lattice proteins written with reduced two-letter amino acid alphabets. These different approaches suggested contrasting characteristics of the most designable structures. This report compares the designability of lattice proteins over a wide range of amino acid alphabets and foldability requirements. While all alphabets have a wide distribution of protein designabilities, the form of the distribution depends on how protein "viability" is defined. Furthermore, under increasing foldability requirements, the change in designabilities for all alphabets are in good agreement with the previous conclusions of the foldability approach. Most importantly, it was noticed that those structures that were highly designable for the two-letter amino acid alphabets are not especially designable with higher-letter alphabets.  相似文献   

17.
Automated methodologies to design synthetic proteins from first principles use energy computations to estimate the ability of the sequences to adopt a targeted structure. This approach is still far from systematically producing native-like sequences, due, most likely, to inaccuracies when modeling the interactions between the protein and its aqueous environment. This is particularly challenging when engineering small protein domains (with less polar pair interactions than with the solvent). We have re-designed a three-helix bundle, domain B, using a fixed backbone and a four amino acid alphabet. We have enlarged the rotamer library with conformers that increase the weight of electrostatic interactions within the design process without altering the energy function used to compute the folding free energy. Our synthetic sequences show less than 15% similarity to any Swissprot sequence. We have characterized our sequences in different solvents using circular dichroism and nuclear magnetic resonance. The targeted structure achieved is dependent on the solvent used. This method can be readily extended to larger domains. Our method will be useful for the engineering of proteins that become active only in a given solvent and for designing proteins in the context of hydrophobic solvents, an important fraction of the situations in the cell.  相似文献   

18.
19.
Aquaporins (AQP) are transmembrane channels for small, predominantly uncharged solutes. Their selectivity is partly determined by the aromatic/arginine constriction. Ammonia is similar in size and polarity to water, yet a subset of aquaporins distinguishes between the two. We mutated the constriction of water-selective rat AQP1 to mimic that of the ammonia-permeable human AQP8 by replacing Phenylalanine 56 with histidine, Histidine 180 with isoleucine, and Cysteine 189 with glycine, alone and in combination. Only AQP1 mutants including the H180I exchange increased the ammonia and methylamine tolerance of yeast. In a second set of mutations, we replaced Histidine 180 with alanine, leucine, methionine, phenylalanine, asparagine or glutamine. AQP1 H180A was equivalent to AQP1 H180I. AQP1 H180L increased ammonia but not methylamine tolerance of yeast. AQP1 mutants with methionine, phenylalanine, asparagine or glutamine in place of Histidine 180, increased neither ammonia nor methylamine tolerance of yeast. All mutants conducted water, as judged by osmotic assays with yeast sphaeroplasts. We propose that the arginine-facing amino acid residue is the most versatile selector of aquaporin constrictions, excluding Escherichia coli glycerol facilitator-type aquaporins.  相似文献   

20.
Hydrophobicity analyses applied to databases of soluble and transmembrane (TM) proteins of known structure were used to resolve total genomic hydrophobicity profiles into (helical) TM sequences and mainly "subhydrophobic" soluble components. This information was used to define a refined "hydrophobicity"-type TM sequence prediction scale that should approach the theoretical limit of accuracy. The refinement procedure involved adjusting scale values to eliminate differences between the average amino acid composition of populations TM and soluble sequences of equal hydrophobicity, a required property of a scale having maximum accuracy. Application of this procedure to different hydrophobicity scales caused them to collapse to essentially a single TM tendency scale. As expected, when different scales were compared, the TM tendency scale was the most accurate at predicting TM sequences. It was especially highly correlated (r = 0.95) to the biological hydrophobicity scale, derived experimentally from the percent TM conformation formed by artificial sequences passing though the translocon. It was also found that resolution of total genomic sequence data into TM and soluble components could be used to define the percent probability that a sequence with a specific hydrophobicity value forms a TM segment. Application of the TM tendency scale to whole genomic data revealed an overlap of TM and soluble sequences in the "semihydrophobic" range. This raises the possibility that a significant number of proteins have sequences that can switch between TM and non-TM states. Such proteins may exist in moonlighting forms having properties very different from those of the predominant conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号