首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surface behaviour of monolayers of wheat phospholipids in the presence of phytohormones introduced into the water phase was studied using Langmuir's method. The phospholipids were extracted from the plasmalemma of non-embryogenic (NE) and embryogenic (E) calli initiated from two types of explant: immature inflorescences (inf) and embryos (emb). The surface properties were investigated in model systems of monolayers of mixed phospholipids with: 1) natural amphiphile composition (PL); 2) a determined hydrophobic part (16:0) and the natural percentage composition of the hydrophilic part (PPL); and 3) a determined hydrophilic part (PC) and the natural percentage composition of the hydrophobic part (HPL). The lower limit values of the molecular area (A(lim)) were observed for NE rather than for E monolayers in all the investigated systems (PL, PPL and HPL). The collapse pressure (pi(coll)) of the monolayer decreased in the order PPL>PL>HPL, indicating the high stability of monolayers containing saturated hydrocarbon chains. The injection of non-surface-active phytohormones into the water subphase and the subsequent formation of natural and also artificial phospholipid monolayers of E and NE causes a decrease in monolayer stability against collapse and molecular close packing. As a result of their amphipathic (hydrophilic-hydrophobic) structure, the surface properties of E phospholipids are probably optimal for these systems. The decreasing stability of the NE monolayer caused by the presence of the phytohormone seems to be advantageous in terms of membrane preparation for the differentiation process. All the investigated lipid monolayers (highly) stimulated the adsorption of indole-3-acetic acid (to the highest extent/degree) (among the examined phytohormones) from the subphase. Zearalenone had a significant influence on the surface properties of NE PPL and NE HPL monolayers. This may be connected with the ability of this phytohormone to affect the non-embryogenic structure of wheat. An anomalous temperature effect was observed in the presence of indole-3-acetic acid (IAA) in the bulk; phospholipid monolayers of embryogenic calli induced from embryos (E emb) when the temperature decreased from 25 to 15 degrees C. This phenomenon is ascribed to the dehydration of the polar groups in the monolayer  相似文献   

2.
The zeta potential measurements of protoplasts obtained from winter wheat cell culture and phospholipid liposomes were performed to determine the electrokinetic charge in a medium containing various phytohormones (kinetin, 2,4-D and zearalenone) in absence and in presence of 2 x 10(-5) MCa2+. Calli were induced from immature inflorescences (inf) and embryos (emb) and cultured to obtain non-embryogenic (NE) and embryogenic (E) cell tissues. All investigated phytohormones indicate ability to adsorb to the negatively charged surfaces (latex, L88 - model negative adsorption site) both in water solutions and at the presence of mannitol and buffer (MES). In biological systems (protoplasts and liposomes - prepared from phospholipids of protoplasts) the electrokinetic charges were dependent on the phospholipid and protein composition of cells. The influence of protein groups on electrokinetic charge was calculated from charge values of protoplasts and liposomes, assuming additivity of surface charges. The comparison of calculated charges for protoplasts and liposomes indicate that 2,4-D is better adsorbed to the phospholipid and proteins of NE cells whereas kinetin is bound to the phospholipid and protein sites of E calli. This effect may be connected with embryogenesis process, where non-embryogenic culture of wheat requires 2,4-D in the medium, and embryogenic culture requires cytokinin rather. Zearalenone binding is especially dependent on the kind of explant.  相似文献   

3.
Surface parameters of polar lipids extracted from winter wheat plastids were investigated by the Langmuir and X-ray differentiation scattering methods. Highly purified plastids were isolated from non-embryogenic (NE) and embryogenic (E) calli initiated from inflorescences. NE plastids contained more monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) and less phospholipids (PL) fraction than E plastids. Moreover, in E calli, unsaturated fatty acids were detected in a higher proportion than in NE for both MGDG and DGDG. No significant differences in fatty acids saturation of PL between NE and E objects were detected. Aqueous surface monolayers were prepared from separate lipids and from mixtures of glycolipids and PL. In the case of MGDG, isotherms showed specific shoulders, contrary to continuous isotherms obtained for other investigated lipids. On the base of pi-A isotherms, the surface parameters: limiting area (A(lim)) and collapse pressure (pi(coll)) were calculated. Indole-3-acetic acid (IAA) increased the A(lim) of all separated lipids about 4-10 angstrom2/mol. However, for NE lipid mixture, the effect of IAA was much smaller (about 2 angstroms2/mol) than for other objects (usually about 5 angstroms2/mol). X-ray experiments for liposomes, obtained from mixtures of glycolipids and PL of NE and E plastids, showed continuous scattering curves with maxima characteristic for lipid bilayer membranes. Calculations of distance distribution functions indicated that bilayer thickness was 41 and 38 angstroms for NE and E, respectively. IAA influence on membrane structures was detected especially in E liposomes and increased the distance between head groups by about 2 angstroms. It is suggested that changes occur during embryogenesis in specific structure of plastid membranes determined also the formation of domains, similar to that suggested for plasmalemma (Plant Sci. 165 (2003) 265). IAA treatment influenced the membrane structure, especially E plastids increasing distances between polar groups.  相似文献   

4.
The influence of hormones in water subphase on the stability of monolayers built of phospholipid mixtures extracted from embryogenic (PLE) and nonembryogenic (PLNE) wheat calli was examined. Additionally, experiments on individual lipids, dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidic acid (DPPA), were performed. DPPC was chosen because it was the main phospholipid present in both calli. Negatively charged DPPA could mimic a negatively charged natural mixture of lipids. As hormones, auxins (IAA and 2,4-D), cytokinins (zeatin and kinetin) and zearalenone were chosen. The time of monolayer stability for PLNE calli was much longer than for PLE calli. Kinetics of monolayer stability of PLNE was similar to DPPA, whereas that of PLE was similar to DPPC. Generally, hormones increased the time after which the monolayer stability was reached and decreased the surface pressure. The greatest effect was observed for auxins (especially IAA), whereas cytokinins affected the monolayer stability to a lesser degree.  相似文献   

5.
The effect of plant growth substances (IAA, 2,4-D, zeatin, kinetin, zearalenone) were studied on membrane properties of the cells of embryogenic (E) and non-embryogenic (NE) calli derived from immature inflorescences (inf) or embryos (emb) of winter wheat. Calli initiated from inflorescences show higher permeability. The ion leakage from cells of E calli was higher than from cells of NE calli. Growth regulators were used in concentrations of 2-30 mg/l (about 10-140 microM). All tested growth substances increased ion leakage from NE emb cells, IAA, zeatin and kinetin being most effective. In NE inf cells the effect of growth substances was similar as in NE emb, but much weaker. In E cells of both types (inf and emb) growth substances decreased ion leakage. Changes in the leakage of potassium and calcium ions were similar to those in total ion leakage. The uptake of labelled auxins (IAA and 2,4-D) was higher in NE cells (especially in NE inf) than in E cells. The endogenous level of IAA was higher in E cells than in NE cells and in inf cells than in emb cells. The importance of auxin in determining permeability of cell membranes is discussed.  相似文献   

6.
Embryogenic suspension cultures of domesticated carrot (Daucus carota L.) are characterized by the presence of proembryogenic masses (PEMs) from which somatic embryos develop under conditions of low cell density in the absence of phytohormones. A culture system, referred to as starting cultures, was developed that allowed analysis of the emergence of PEMs in newly initiated hypocotyl-derived suspension cultures. Embryogenic potential, reflected by the number of FEMs present, slowly increased in starting cultures over a period of six weeks. Addition of excreted, high-molecular-weight, heat-labile cell factors from an established embryogenic culture considerably accelerated the acquisition of embryogenic potential in starting cultures. Analysis of [35S]methionine-labeled proteins excreted into the medium revealed distinct changes concomitant with the acquisition of embryogenic potential in these cultures. Analysis of the pattern of gene expression by in-vitro translation of total cellular mRNA from starting cultures with different embryogenic potential and subsequent separation of the [35S]methionine-labeled products by two-dimensional polyacrylamide gel electrophoresis demonstrated a small number of abundant in-vitro-translation products to be present in somatic embryos and in embryogenic cells but absent in nonembryogenic cells. Several other in-vitro-translation products were present in explants, non-embryogenic and embryogenic cells but were absent in somatic embryos. Hybridization of an embryoregulated complementary-DNA sequence, Dc3, to RNA extracted from starting cultures showed that the corresponding gene is expressed in somatic embryos and PEMs but not in non-embryogenic cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - cDNA complementary DNA - PAGE polyacrylamide gel electrophoresis - PEM proembryogenic mass  相似文献   

7.
The surface pressure (pi)-molecular area (A) isotherms for monolayers of human high-density lipoprotein (HDL3) and low-density lipoprotein (LDL) phospholipids and of mixed monolayers of these phospholipids with cholesterol spread at the air-water interface were used to deduce the likely molecular packing at the surfaces of HDL3 and LDL particles. LDL phospholipids form more condensed monolayers than HDL3 phospholipids; for example, the molecular areas of LDL and HDL3 phospholipids at pi = 10 dyn/cm are 88 and 75 A2/molecule, respectively. The closer packing in the LDL phospholipids monolayer can be attributed to the higher contents of saturated phosphatidylcholines and sphingomyelin relative to HDL3. Cholesterol condenses both HDL3 and LDL phospholipid monolayers but has a greater condensing effect on the LDL phospholipid monolayer. The pi-A isotherms for mixed monolayer of HDL3 phospholipid/cholesterol and LDL phospholipid/cholesterol at stoichiometries similar to those at the surfaces of lipoprotein particles suggest that the monolayer at the surface of the LDL particle is significantly more condensed than that at the surface of the HDL3 particle. The closer lateral packing in LDL is due to at least three factors: (1) the difference in phospholipid composition; (2) the higher unesterified cholesterol content in LDL; and (3) a stronger interaction between cholesterol and LDL phospholipids relative to HDL3 phospholipids. The influence of lipid molecular packing on the affinity of human apolipoprotein A-I (apo A-I) for HDL3 and LDL surface lipids was evaluated by monitoring the adsorption of 14C-methylated apo A-I to monolayers of these lipids spread at various initial surface pressures (pi i).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (B(max)) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in deltapi change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The deltapi change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a "raft-like" mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

9.
Summary Coleonol was produced in callus culture; the kind and level of phytohormones, glycine, casein hydrolysate and sucrose content of the medium differently influenced growth and product formation. Maximum specific growth rate was obtained in medium containing 7% sucrose. Biomass production was highest with 4 ppm of NAA. Maximum product (0.075% of dry cells) was formed in medium containing 0.5 ppm IAA and IBA each, 5 ppm glycine, 200 ppm casein hydrolysate and 7% sucrose.Abbreviations Su Sucrose - NAA naphthalene acetic acid - 2,4-D-2,4 diphenoxy acetic acid - IBA Indole-3-butyric acetic acid - IAA indole 3-acetic acid - Kn Kinetin - Gl glycine - Ch casein hydrolysate  相似文献   

10.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

11.
Langmuir-Blodgett (LB) films of two heteroacid phospholipids of biological interest 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), as well as a mixed monolayer with chi(POPC)=0.4, were transferred onto mica in order to investigate by a combination of atomic force microscopy (AFM) and force spectroscopy (FS) their height, and particularly, their nanomechanical properties. AFM images of such monolayers extracted at 30 mN m(-1) revealed a smooth and defect-free topography except for the POPE monolayer. Since scratching such soft monolayers in contact mode was proved unsuccessful, their molecular height was measured by means of the width of the jump present in the respective force-extension curves. While for pure POPC a small jump occurs near zero force, for the mixed monolayer with chi(POPC)=0.4 the jump occurs at approximately 800 pN. Widths of approximately 2 nm could be established for POPC and chi(POPC)=0.4, but not for POPE monolayer at this extracting pressure. Such different mechanical stability allowed us to directly measure the threshold area/lipid range value needed to induce mechanical stability to the monolayers. AFM imaging and FS were next applied to get further structural and mechanical insight into the POPE phase transition (LC-LC') occurring at pressures >36.5 mN m(-1). This phase transition was intimately related to a sudden decrease in the area/molecule value, resulting in a jump in the force curve occurring at high force ( approximately 1.72 nN). FS reveals to be the unique experimental technique able to unveil structural and nanomechanical properties for such soft phospholipid monolayers. The biological implications of the nanomechanical properties of the systems under investigation are discussed considering that the annular phospholipids region of some transmembrane proteins is enriched in POPE.  相似文献   

12.
When fast twitch skeletal muscle vesicles (SR) and purified calcium pump protein are stripped with the nonionic detergent C12E8 (octaethylene glycol dodecyl ether), not all the membrane phospholipids are removed from the calcium pump protein. Maximal extraction produces a remnant of 6-8 mol of phospholipid/mole of calcium ATPase (CaATPase). In contrast to native SR and the prestripped purified CaATPase, the remaining phospholipid is markedly enriched in phosphatidylethanolamine (PE) and phosphatidylserine (PS) in both preparations; the remaining lipid is also enriched in phospholipid that is predominantly unsaturated. In addition, virtually all of the associated PE is plasmalogenic (96% as opposed to 63% in the native SR). The amino-specific cross-linking reagent DFDNB (1,5-difluoro-2,4-dinitrobenzene sulfonic acid) and the amino binding reagent TNBS (2,4,6-trinitrobenzene sulfonic acid) were utilized to identify the monolayer of the native preparation where these phospholipids reside, and to determine which phospholipids are closely associated with the calcium pump protein following detergent treatment. These studies demonstrate that PE and PS are closely associated with the pump protein, PE residing almost exclusively in the outer monolayer of SR, while PS resides in the inner monolayer. Nonspecific phospholipid exchange protein was shown to be capable of exchanging phospholipids from donor vesicles into those phospholipids associated with the CaATPase; stripping of lipid-exchanged vesicles with C12E8 exhibited the same specificity with regard to head-group species (i.e., PE is markedly enriched in the extracted protein associated fraction). The results suggest that specific protein-lipid interactions exist, favoring the association of plasmalogenic aminophospholipids with the calcium pump protein.  相似文献   

13.
T Handa  H Saito    K Miyajima 《Biophysical journal》1993,64(6):1760-1765
Triolein (TO) and phospholipids (egg yolk phosphatidylcholine, egg yolk phosphatidylethanolamine, and bovine brain phosphatidylserine) had low mutual solubilities and separated into the TO-liquid phase and phospholipid-bilayers. Spreading pressures of the TO-phospholipid mixture (i.e., surface pressures of the mixed monolayer in equilibrium with the phase-separating lipid mixture) at the air/saline interface were independent of the lipid composition. On the other hand, collapse pressures of the mixed monolayer of TO and phospholipid (i.e., surface pressures of the mixed monolayer in equilibrium with the TO-liquid phase) at the interface changed with the monolayer composition and were lower than the spreading pressure. The experimental data indicated the spreading and collapse pressures as offering a phase diagram for the presence of equilibrium between the mixed monolayer, the phospholipid-bilayers and the TO-liquid phase. The diagram showed that TO and the phospholipids were miscible in the mixed monolayer, forming an eutectic mixed monolayer. When the mixed monolayer initially had the eutectic composition, no collapse of the monolayer was detected until the surface pressure reached the value of the spreading pressure. No specific complex between TO and the phospholipid is required to explain the stability and collapse of the mixed monolayers. The bulk immiscibility of the lipids elucidated by the spreading pressure-measurements, immediately leads to the phase behaviors observed.  相似文献   

14.
Long-duration,high-frequency plant regeneration from cereal tissue cultures   总被引:7,自引:0,他引:7  
By visual examination of calli derived from germinating seeds of wheat, oats, rice, proso millet, and pearl millet it has been possible to visually select embryogenic (E) callus which, on transfer to a regeneration medium, forms plants an average of 33 times more frequently than non-embryogenic (NE) callus of equal mass. Embryogenic callus consists of small isodiametric cells averaging 31 m in diameter; NE callus consists of long tubular cells averaging 52 m in width and 355 m in length. Production of E callus is in many cases promoted by media containing 2,4-di- or 2,4,5-trichlorophenoxyacetic acid (2,4-D or 2,4,5-T) plus indole-3-acetic acid or tryptophan+kinetin. Production on NE callus is promoted by media containing 2,4-D or 2,4,5-T alone. As a result of initial experiments to optimize both media for E callus production and media for plant regeneration, callus derived in six passages from an average of 26 seeds could produce about 1,000 regenerated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - IAA indole-3-acetic acid - Kin kinetin - Trp L-tryptophan - E embryogenic - NE non-embryogenic  相似文献   

15.
Naturally occurring plant growth regulators gibberellic acid (GA), indole-3-acetic acid (IAA), abscisic acid (ABA), ethylene and other growth regulating compounds such as 5-methyl-7-chloro-4-ethoxycarbonylmethoxy-2,1,3-benzothiadiazole (TH) and 2,4 dichlorophenoxyacetic acid (2,4-D), had no effect on the partition behavior of a piperidine based spin label in liposomes composed of pure or mixed phospholipids or a phospholipid-sterol mixture. Although no effect on fluidity was observed, TH significantly increased the initial rate of swelling of soybean lecithin-sitosterol liposomes in isotonic glycerol. IAA and ethylene did not influence this rate but ABA, GA and 2,4-D inhibited the initial rate of swelling. Lipid composition of liposomes determined the extent and direction of the effects on swelling rates. The observed swelling behavior was, therefore, not related to fluidity of the bulk membrane lipids but was due, instead, to modification of the access of glycerol to the phospholipid bilayer surface or, alternatively, to the creation of polar channels into the liposomes.  相似文献   

16.
Comparative studies of the effect of a short synthetic cationic peptide, pEM-2 (KKWRWWLKALAKK), derived from the C-terminus of myotoxin II from the venom of the snake Bothrops asper on phospholipid mono- and bilayers were performed by means of Langmuir Blodgett (LB) monolayer technique, atomic force microscopy and calcein leakage assay. Phospholipid mono- and bilayers composed of single zwitterionic or anionic phospholipids as well as lipid mixtures mimicking bacterial cell membrane were used. LB measurements indicate that the peptide binds to both anionic and zwitterionic phospholipid monolayers at low surface pressure but only to anionic at high surface pressure. Preferential interaction of the peptide with anionic phospholipid monolayer is also supported by a more pronounced change of the monolayer pressure/area isotherms induced by the peptide. AFM imaging reveals the presence of nanoscale aggregates in lipid/peptide mixture monolayers. At the same time, calcein leakage experiment demonstrated that pEM-2 induces stronger disruption of zwitterionic than anionic bilayers. Results of the study indicate that electrostatic interactions play a significant role in the initial recognition and binding of pEM-2 to the cell membrane. However, membrane rupturing activity of the peptide depends on interactions other than simple ionic attraction.  相似文献   

17.
L K Tamm 《Biochemistry》1986,25(23):7470-7476
The interaction of the chemically synthesized 25-residue signal peptide of subunit IV of yeast cytochrome c oxidase with synthetic and natural phospholipids was studied by using a monolayer technique. Incorporation of the peptide into phospholipid monolayers was measured as surface area increase at constant surface pressure. The peptide was readily soluble in aqueous buffer, yet spontaneously inserted from an aqueous subphase into phospholipid monolayers up to limiting pressures of 30-40 mN/m. The incorporation of the positively charged peptide was strongly enhanced by the presence of negatively charged phospholipids. The molecular area of the signal peptide in monolayers was determined with a 14C-labeled signal peptide and was 560 +/- 170 A2. This is consistent with a 25-residue alpha-helical peptide incorporating with its long axis parallel to the plane of the monolayer. Incorporation isotherms into synthetic phosphatidylcholine and phosphatidylglycerol monolayers at different charge densities were analyzed in terms of a simple incorporation/binding model, involving partitioning of the peptide into the monolayer and an in-plane binding reaction of the negatively charged phospholipids to the partitioned peptide.  相似文献   

18.
Summary Previous results have shown that some proteins secreted in the culture medium are involved with the formation of embryogenic cells and can modify somatic embryo differentiation. Undifferentiated cell suspensions grown in the presence of 13 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and obtained from embryogenic and non-embryogenic callus were used to study these events in sugarcane plants (cv.PR-62258). The cell suspension growth curves were determined and soluble proteins were extracted from embryogenic and non-embryogenic callus and culture medium from cell suspensions. In embryogenic callus we detected 1.43 times more protein than in non-embryogenic callus and the electrophoretic protein patterns show specific polypeptides for both callus types. In embryogenic callus we detected a cluster of four polypeptides in the range of 38–44 kDa and another polypeptide of 23 kDa that were not observed in non-embryogenic callus. In nonembryogenic callus there is a 35-kDa polypeptide that was not detected in embryogenic callus. In the case of extracellular proteins, the medium from embryogenic cell suspensions contained four polypeptides of 41, 38, 34 and 28 kDa that were slightly detected in the medium from non-embryogenic cell cultures; we also detected a band at 15 kDa that could not be observed in the medium from non-embryogenic cell suspensions. These results suggest that the development of embryogenic callus and cell suspensions is related to the type and amount of intracellular proteins in the callus cells and to the secreted proteins from these cells into the medium.  相似文献   

19.
Embryogenic callus cultures were obtained upon repeated sub-culture of non-embryogenic callus from nodal segments of Cymbopogon martinii (Roxb.) Wats. Murashige and Skoog's medium supplemented with 1mg/l 2,4-dichlorophenoxyacetic acid and 0.5 mg/l kinetin and Linsmaier and Skoog's medium supplemented with 2mg/l 2,4-dichlorophenoxyacetic acid and 0.4 mg/l kinetin were used as maintenance media for non-embryogenic and embryogenic cultures, respectively. Plant regeneration occurred through organogenesis in MS basal media containing 2 mg/l kinetin, 1 mg/l 6-benzylaminopurine, 0.2 mg/l biotin, 0.2 mg/l Ca-pantothonate and 0.1 mg/l napthalene acetic acid. Embryogenesis was induced in LS medium supplemented with 1 mg/l kinetin, 0.5 mg/l 6-benzylaminopurine and 0.1 mg/l 3-indole acetic acid. Plant regeneration at high frequency was recorded both through organogenesis and embryogenesis in different passages of long term callus cultures.Abbreviation MS Murashige and Skoog medium - LS Linsmair and Skoog medium - BAP 6-benzylaminopurine - kin kinetin - 2,4-D 2,4-Dichlorophenoxyacetic acid - IAA Indole-3-acetic acid - CH Casein hydrolysate - CaP calcium pantothonate - NAA napthalene acetic acid  相似文献   

20.
The aim of presented researches was to investigate the physicochemical properties of Langmuir monolayer of galactolipids extracted from two different kinds of plastids: immature embryos and inflorescences. Differences between the physicochemical properties of the plastid membranes may help to explain different physiological processes, such as plant regeneration. Surface pressure (pi) vs. molecular area (A) isotherms of the monogalactosyldiacylglycerol (MGDG)/digalactosyldiacylglycerol (DGDG) monolayers of various molar ratios were measured at 15 degrees C. Galactolipids were extracted from two different types of tissue: inflorescences and embryos. Based on the analysis of the pi-A isotherms, the properties of monolayers, such as collapse pressure (pi(coll)), limiting area (A(lim)), compressibility modulus (C(s)(-1)), excess free energy of mixing (DeltaG(EXC)) and free energy of mixing (DeltaG(MIX)), were calculated. The results show that pure MGDG and DGDG and their mixtures form liquid-expanded monolayers, independently on the kind of tissue. Galactolipids originating from inflorescences produce more compressible films at the air/water interface, with larger limiting area per molecule and lower stability against the collapse process. MGDG and DGDG are miscible and form non-ideal mixed monolayers at the air/water interface. Negative values of DeltaG(EXC) were calculated for the mixture of galactolipids originating from inflorescences, with the content of MGDG, x(MGDG)>0.6. In the case of embryos, the negative values of DeltaG(EXC) were found for x(MGDG) approximately 0.5. Therefore, the attractive interactions between MGDG and DGDG exist in the mixtures of these compositions. As it is shown by negative values of DeltaG(MIX), mixed monolayers are more stable compared with unmixed ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号