首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activity of sensorimotor cortex neurons was recorded in chronic experements on cats trained to perform instrumental conditional reflex; records were made before, during, and after isolated iontophoretic applications of haloperidol or glutamate, or their combined application. Haloperidol was shown either to facilitate or to inhibit the background and evoked (related to acoustic stimulation and motor response) spike activity of cortical neurons. Aftereffects of haloperidol were observed too; they were still expressed 10–15 min after the cessation of the iontophoresis. Combined haloperidol and glutamate application was followed by a sharp suppression of the evoked responses potentiated earlier by glutamate. An adenylatecyclase system is supposed to mediate the facilitation evoked by glutamate application. Some modulators, including dopamine, probably activate adenylatecyclase and in this way ensure facilitation of the glutamate-induced responses.Neirofiziologiya/Neurophysiology, Vol. 26, No. 5, pp. 347–355, September–October, 1994.  相似文献   

2.
Responses of neurons of the periaqueductal gray matter (PAG) were studied in chronic experiments on cats during formation and extinction of a defensive conditioned reflex to sound and its differential inhibition. In response to conditioned stimulation these neurons developed phasic-tonic spike responses up to 3 sec in duration. During combination of stimuli these responses were formed long before the conditioned reflex and disappeared long after the latter was extinguished. In the case of an established conditioned reflex, the onset of spike responses occurred 100–200 msec before the appearance of motor responses. An increase in spike activity of tonic character in neurons of PAG preceded voluntary movements by 100–500 msec. The responses of these neurons to presentation of a differential stimulus consisted of groups of spikes 150–200 msec in duration. They were formed with difficulty, and their manifestation was made even more difficult by an interruption during the experiment and by preceding positive stimuli. On the basis of the results a conditioned reflex can be regarded as the result of a multilevel hierarchic process of readjustment of unit activity, which begins in the nonspecific structures of the midbrain.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 15, No. 3, pp. 278–287, May–June, 1983.  相似文献   

3.
1. Synchronized spontaneous intracellular Ca2+ spikes in networked neurons are believed to play a major role in the development and plasticity of neural circuits. Glutamate-induced signals through the ionotropic glutamate receptors (iGluRs) are profoundly involved in the generation of synchronized Ca2+ spikes.1 2. In this study, we examined the involvement of metabotropic glutamate receptors (mGluRs) in cultured mouse cortical neurons. We pharmacologically revealed that glutamate-induced signals through inclusive mGluRs decreased the frequency of Ca2+ spikes. Further experiments indicated that this suppressive effect on the spike frequency was mainly due to the signal through group II mGluR, inactivation of adenylate cyclase-cAMP-PKA signaling pathway. Group I mGluR had little involvement in the spike frequency.3. Taken together, glutamate generates the synchronized Ca2+ spikes through iGluRs and modulates simultaneously their frequency through group II mGluR–adenylate cyclase–cAMP–PKA signaling pathway in the present in vitro neural network. These results provide the evidence of the profound role of group II mGluR in the spontaneous and synchronous neural activities.  相似文献   

4.
Summary The sulphur-containing radioprotectors mercaptoethylamine (MEA), aminoethylisothiourea (AET), 2-aminothiazoline, 4-oxo-2-aminothiazoline, and S-S-3-oxapentane-1,5-diisothiourea, and the radioprotective biogenic amines serotonin, histamine, and dopamine, caused the elevation of cAMP content and intensified the rate of cAMP-dependent protein phosphorylation in tissues of animals following intraperitoneal injection at radioprotective doses. Biogenic amines stimulated the adenylate cyclase activity in membrane preparations from liver, spleen, and small-intestine mucosa; sulphur-containing radioprotectors caused no such effects. None of the radioprotectors affected cAMP and cGMP phosphodiesterases in vitro. AET and MEA inhibited guanylate cyclase in vitro, whereas serotonin and dopamine stimulated the enzyme. A biphasic change in the level of cGMP was observed in tissues after the administration of MEA and AET (more than 2-fold fall by 1–3 min after the administration of drug and 1.4-fold rise after 15–20 min); serotonin and dopamine caused a slow rise in the cGMP level; the cAMP/cGMP ratio in liver showed biphasic changes in level during the 20 min following injection of serotonin.The data obtained support the conclusion that the action of radioprotectors on cellular metabolism in animals may be mediated by the cAMP system. The reciprocal regulation of radioresistance by cAMP and cGMP is unlikely to exist.  相似文献   

5.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

6.
In chronic experiments on cats unit responses of the primary auditory cortex (area 50) were studied by microelectrode recording during defensive conditioning to sound. During formation of the reflex biphasic responses with relatively short-latency (50–100 msec) and longer-latency (400–500 and 800–900 msec) activation predominated. Neighboring neurons, whose activity was recorded by the same microelectrode, also were involved more intensively in activity. Application of a differential stimulus in 70% of cases produced definite changes in unit activity, among which responses of activation type predominated. Analysis of the course of spike responses of the same neuron during the period of action of a large number of combinations and its comparison with the formation of the conditioned-reflex motor response revealed no direct correlation between these events.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 2, pp. 99–108, March–April, 1979.  相似文献   

7.
Effects of dopamine on the background spike activity of functionally (according to their electrophysiological characteristics) identified dopaminergic (DA) or non-dopaminergic (non-DA) neurons of the compact zone of thesubstantia nigra were studied on slices of the midbrain of adult rats. In the majority of DA neurons, dopamine suppressed the background activity in a dose-dependent manner. Sensitivity of these cells to dopamine varied within a wide range: IC50, the concentration providing the 50% maximum effect, equalled from 3 to 3,000 µM in different units. A part of DA neurons responded to dopamine with an increase in their activity. Mixed responses, in which an initial suppression of impulsation was replaced by a slow-developing activation, was observed in some neurons. Non-DA neurons usually responded to dopamine by an enhancement of impulsation; yet, the cells with inhibitory or mixed responses similar to those of DA neurons could be found in this population as well. Sensitivity of non-DA neurons to dopamine was about the same as that of DA-cells, without the dependence on the direction of responses. S(–)-suipiride, a blocker of D2 receptors, decreased the inhibitory component of all tested responses to dopamine both in DA and non-DA neurons and evoked no changes in the excitatory component. At the same time, R(+)-SCH 23390 HC1, a blocker of D1 receptors, suppressed the activatory component of responses with no effect on the inhibitory component. We conclude that both types of DA receptors, D2 and D1 receptors, can be present on the DA and non-DA neurons. Dopamine, influencing these receptors, suppresses or facilitates, respectively, the spike activity of these cells. The relative amount of such receptors is the main factor determining the pattern and dynamics of the integral response to dopamine application. The possible functional role of the presence of both D1 and D2 receptors on the membrane of a single neuron is discussed.Neirofiziologiya/Neurophysiology, Vol. 27, No. 4, pp. 268–277, July–August, 1995.  相似文献   

8.
Intracellular correlates of complex sets of rhythmic cortical "spike and wave" potentials evoked in sensorimotor cortex and of self-sustained rhythmic "spike and wave" activity were examined during acute experiments on cats immobilized by myorelaxants. Rhythmic spike-wave activity was produced by stimulating the thalamic relay (ventroposterolateral) nucleus (VPLN) at the rate of 3 Hz; self-sustained afterdischarges were recorded following 8–14 Hz stimulation of the same nucleus. Components of the spike and wave afterdischarge mainly correspond to the paroxysmal depolarizing shifts of the membrane potential of cortical neurons in length. After cessation of self-sustained spike and wave activity, prolonged hyperpolarization accompanied by inhibition of spike discharges and subsequent reinstatement of background activity was observed in cortical neurons. It is postulated that the negative slow wave of induced spike and wave activity as well as slow negative potentials of direct cortical and primary response reflect IPSP in more deep-lying areas of the cell bodies, while the wave of self-sustained rhythmic activity is due to paroxysmal depolarizing shifts in the membrane potential of cortical neurons.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 298–306, May–June, 1986.  相似文献   

9.
During acute experiments on unanesthetized cats, immobilized with myorelaxants, it was found that during rhythmic stimulation (8–14 Hz, duration: 10 sec) of the ventroposterolateral thalamic nucleus brief hyperpolarization is succeeded by depolarization in the pyramidal neurons of the sensorimotor cortex. Following this depolarization, rhythmic (approximately 3 Hz) paroxysmal depolarizing shifts in membrane potential are produced by ending stimulation, succeeded by protracted hyperpolarization and termination of rhythmic wave activity. Depolarization only is observed in glial cells, however, while hyperpolarization sets in after hyperpolarization is completed in the neurons. It is suggested that long-term changes in the membrane potential of cortical cells could make some contribution to the setting up and termination of rhythmic spike and wave activity.I. S. Beritashvili Institute of Physiology, Academy of Sciences of the Georgian SSR, Tbilisi. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 319–325, May–June, 1986.  相似文献   

10.
The effects of 1·10–5–1·10–3 M dopamine on background and evoked interneuronal-activity was investigated during experiments on a spinal cord segment isolated from 11–18-day old infnat rats. Dopamine induced an increase in background firing activity rate in 52.5% and a reduced rate in 42.5% of the total sample of responding cells. Dopamine exerted a primarily inhibitory effect on interneuronal activity invoked by dorsal root stimulation, as witnessed by the reduced amplitude of the postsynaptic component of field potentials in the dorsal horn together with the fact that invoked activity was depressed in 66.7% of total interneurons responding to dopamine and facilitated in only 33.3% of these cells. All dopamine-induced effects were reversible and dose-dependent. Dopamine-induced effects disappeared after superfusing the brain with a solution containing 0–0.1 mM Ca2+ and 2 mM Mn2+, suggesting that this response is of transsynaptic origin. In other cells the excitatory or inhibitory action of dopamine also persisted in a medium blocking synaptic transmission; this would indicate the possibility of dopamine exerting depolarizing and hyperpolarizing effects on the interneuron membrane directly. Contrasting responses to dopamine in interneurons may be attributed to the presence of different types of dopamine receptors in the spinal cord.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 1, pp. 7–16, January–February, 1989.  相似文献   

11.
Changes of the activity of cortical neurons were studied in the posterior crucial gyrus and in the middle parts of the suprasylvian and ectosylvian gyri on cooling the brain to 18°C and below. In exact experiments it was noted that cooling the cortex to 18.8–21.8° causes a complete cessation of neuron activity. The kinetics of the change of activity under these conditions follows a definite order: first an increase of the frequency of spike discharges is observed (31–27°), then a decrease of their amplitude (at 25–22°), and finally a complete disappearance of neuron activity (at 21.8–18.8°). Discontinuation of the cooling leads to restoration of the activity of the nerve cells in inverse order: low-amplitude high-frequency discharges manifest (at 23–26°), the amplitude of the spikes increases (at 29–31°) and then the initial activity is restored (at 31–32°). The decrease of neuron activity depends on the rate of temperature drop in the cortex. The faster the cortex is cooled, the lower is the temperature at which the neurons cease to function. And conversely, slow cooling of the cortex causes an inactivation of the spike potentials at a higher temperature.S. M. Kirov Gorki State Medical Institute. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 59–63, January–February, 1970.  相似文献   

12.
The potential difference on the receptor epithelium of the ampullae of Lorenzini and on the skin and also spike discharges of single electroreceptor nerve fibers in response to temperature stimulation of the region of the pores of the ampullae were studied in the Black Sea skateRaja clavata. Heating the skin in the region of the pore led to the appearance of a positive potential on the skin and on the epithelium of the ampulla, and to inhibition of spike activity. The time course of the change in potential reflected the course of change of temperature; the temperature coefficient was 100–150 µV/°C. Cooling the skin was accompanied by a negative deviation of potential on the skin and in the ampullary canal and by excitation of spike activity. During cooling the temperature coefficient was 30–50 µV/°C. It is concluded that spike activity of electroreceptors reflects changes in potential on the skin due to changes in temperature. The mechanism and biological significance of the phenomena discovered are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 3, pp. 307–314, May–June, 1981.  相似文献   

13.
During acute experiments on 20 cats a comparative study was made of neuronal reaction to a tone, as recorded during the first few hours after administration of Nembutal and after an interval of 10–30 h. No spontaneous activity was seen in 89% of auditory cortex neurons of the anesthetized cats; these produced a sterotyped on- response to the optimal frequency tone. Late neuronal spike discharges at distinct intervals of 100–150 msec appeared in response to the setting up of acoustic stimulation after a brief latent reaction lasting 9–15 msec. It was shown that this stimulation did not produce an off-response in the cortical neurons. When the animals emerged from Nembutal anesthesia, the neurons reacted very differently to the optimal frequency tone. About 76% of the cells produced an on, on-off or off response, while about 21% responded with either tonic spike discharges or total inhibition of these throughout the acoustic stimulation. In unanesthetized cats the vast majority of AI cortical neurons were capable of reacting as long as the stimulus lasted. It is shown how this ability is lost under deep Nembutal anesthetic.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 6, pp. 728–737, November–December, 1985.  相似文献   

14.
Perfusion of isolated Pacinian corpuslces in the cat mesentery with solutions of dibutyryl-cAMP or theophylline caused an increase in spike activity against the background of a reduction in amplitude of receptor potentials and lowering of the threshold for spike generation. The opposite effect on mechanoreceptor electrical responses was found when catecholamines were used. It was postulated on the basis of these findings that the action of catecholamines on Pacinian corpuscles is accompanied by a fall in the cAMP level in the sensory nerve terminal. Noradrenalin caused a decrease in adenylate cyclase activity in receptor homogenates. The activating effect of noradrenalin on Na+, K+-ATPase, abolished by phentolamine but unchanged by propranolol, was demonstrated. The possible role of -adrenoreceptors in the modulating effect of catecholamines on electrical activity of Pacinian corpuscles is discussed.S. V. Kurashov Medical Institute, Ministry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 158–163, March–April, 1982.  相似文献   

15.
Effects of subiculum stimulation on spike activity of neurons localized in the supraoptical nucleus (SON) and perinuclear region were studied in experiments on rats; special attention was paid to neurons that did not respond to stimulation of the hypophyseal pedunculus. With rare exception, the SON cells did not respond to subiculum stimulation; 47% of neurons in the perinuclear region were activated after subiculum stimulation, whereas in 15% the frequency of spike activity decreased. Some neurons were found in the perinuclear region that responded to subiculum stimulation by antidromic spike generation.Organization of the studied afferent input to neurons of the supraoptical region and probability of interconnections between investigated structures are discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 4, pp. 253–257, July–August, 1993.  相似文献   

16.
Background activity was recorded in 272 neurons of the ventrolateral thalamic nucleus before and after systemic haloperidol and droperidol injection at a cataleptic dose using intracellular techniques during chronic experiments on cats in a drowsy condition. Brief burster discharges lasting 5–50 msec and following on at a high intraburst spike rate (of 200–450 Hz) were characteristic of neuronal activity in intact animals. Regular discharges occurred at the rate of 2–2.5 Hz or occasionally 3–4 Hz in 15% of cells. Numbers of neurons with the latter activity pattern rose to 22 and 30%, respectively, following haloperidol and droperidol injection. Both irregular and prolonged (80–300 msec) regular discharges were recorded in one third of the total. A relatively low intraburst spike rate (of 60–170 Hz) was observed in 37% of cells following 10 days' haloperidol injection. These changes are thought to be produced by intensified inhibitory effects on neurons of the thalamic ventrolateral nucleus from the substantia nigra and reticular thalamic nucleus following blockade of dopaminergic and -adrenergic receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 675–685, September–October, 1989.  相似文献   

17.
Intracellular cAMP increased 9-fold in cerebral hemisphere primary cultures after incubation with dopamine (10–4M). The effect was dose- and time-dependent (10–6 M-10–4M; 2–10 minutes). It was mimicked, to some extent, by the partial agonist apomorphine (10–5 M-10–4 M) and antagonized by fluphenazine (10–5 M-10–4 M). The elevation of cAMP caused by dopamine was incompletely antagonized by propanolol (10–5 M-10–4 M), obviating an interaction with -adrenergic receptors. A -adrenergic effect was antagonized by propranolol but only slightly by fluphenazine. The effect of dopamine on cAMP-level was more pronounced in a subpopulation of the hemisphere culture, i.e. in astroglial cultures from the striatum, 12-fold compared with controls at 10–4 M. No dopamine stimulated formation of cAMP was found in primary cultures from brain-stem. The results demonstrated some heterogeneity among astroglial cells. The cultures used contained mainly astroglial-like cells, as judged from immnohistochemical localization mainly astroglial-like cells, as judged from immunohistochemical localization of the glial specific proteins S 100 and GFA (-albumin). No mature neurons or oligodendroglial cells have so far been demonstrated in the cultures.  相似文献   

18.
Experiments with intracellular recording from neurons of the isolated crayfish somatogastric ganglion established that the membrane potential of the neurons is 53±3 mV. Single stimulation of the central branches of the ganglion evoked EPSP and a spike in the neurons. The spike amplitude was 7.5±0.6 mV. The small amplitude of the spike is explained by the fact that it arises at some distance from the body of the neuron and propagates electrotonically in it. Summation of several EPSP is necessary in most cases for initiation of the spike. When the orthodromic stimulus was strong enough, and IPSP occurred in some cells in addition to the EPSP and spike. Stimulation of the peripheral nerves of the ganglion induced in most neurons antidromic excitation and in some neurons orthodromic excitation. Some neurons spontaneously discharged rhythmically with an unstable frequency (11–27 impulses/sec). An investigation of the effect on neurons of chemical agents [acetylcholine, adrenalin, noradrenalin, gamma-aminobutyric acid (GABA), glutamic acid, and dopamine] showed that acetylcholine has the strongest and most stable depolarizing action and apparently is a synaptic transmitter in the ganglion. The other agents excited some neurons — depolarized them and evoked rhythmic discharges — and, coversely, hyperpolarized and suppressed the rhythmic activity of other neurons. A scheme of neuronal organization of the somatogastric ganglion of the crayfish is proposed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 3, pp. 307–313, May–June, 1970.  相似文献   

19.
It was established in experiments on isolated rat spinal ganglia that the introduction of dopoamine (0.01–1.0 µM) into a superfusate potentiates the depolarizing responses of the neurons evoked by the action of serotonin, which is delivered from a micropipette under pressure, while the addition of serotonin in the same concentrations potentiates the depolarizing responses of the neurons evoked by the action of dopamine. The mutual potentiation of the effects of dopamine and serotonin depends on the concentration of the monoamines and is eliminated by blockers of the D1- (but not D2-dopamine) and type 2 serotonin (but not IA) receptors. The mutual potentiation of the effects of monoamines is of a postsynaptic nature and is associated with a change in the intracellular concentration of second messengers (Ca2+ and cAMP).A. M. Gor'kii Donetsk Medical Institute, Ministry of Health of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 23, No. 2, pp. 168–173, March–April, 1991.  相似文献   

20.
Characteristics of temporal summation in neurons of area 17 of the visual cortex in acute experiments on unanesthetized, immobilized cats. During light adaptation, extracellular spike responses of these neurons to optimal local photic stimuli of varied duration — from 5 to 1000 msec — were studied. The critical duration of temporal summation of excitation, determined by the supraliminal method using the criterion of maximal discharge frequency in the first volley of the spike response, varied in different cells from 5 to 100 msec; neurons with summation lasting 15–100 msec (mean 31.45±5.67 msec) were found most frequently. Neurons with central receptive fields differed significantly from cellswith peripheral fields in the shorter critical duration of temporal summation, the lower frequency of spontaneous discharges, and the shorter duration of the first volley of the response. Summation time in neurons with simple receptive fields was significantly shorter than in neurons with complex receptive fields. The results of these experiments are compared with data in the literature obtained by the study of retinal and lateral geniculate neurons in cats and are discussed from the stand-point of division of ascending afferent projections in the visual system into X-and Y-groups (Ia and Ib).Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 345–352, July–August, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号