首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new multidimensional scoring approach for identifying and distinguishing trimeric and dimeric coiled coils is implemented in the MultiCoil program. The program extends the two-stranded coiled-coil prediction program PairCoil to the identification of three-stranded coiled coils. The computations are based upon data gathered from a three-stranded coiled-coil database comprising 6,319 amino acid residues, as well as from the previously constructed two-stranded coiled-coil database. In addition to identifying coiled coils not predicted by the two-stranded database programs, MultiCoil accurately classifies the oligomerization states of known dimeric and trimeric coiled coils. Analysis of the MultiCoil scores provides insight into structural features of coiled coils, and yields estimates that 0.9% of all protein residues form three-stranded coiled coils and that 1.5% form two-stranded coiled coils. The MultiCoil program is available at http://theory.Ics.mit.edu/multicoil.  相似文献   

2.
The origin of the 5.15-A meridional reflection on hard alpha-keratin X-ray diffraction patterns is discussed in terms of side-chains conformations. We show it to reveal specific configurations of the side chains which are common to all two-stranded alpha-helical coiled coils. Combining literature data on crystallised coiled coil pieces and molecular dynamics results with our X-ray diffraction pattern simulations, we propose rules for the attribution of chi1 torsion angles for coiled coils involved in fibres whose structure cannot be resolved at atomic resolution: in a (a b c d e f g) heptad repeat, a and d residues, respectively, adopt mean t and g+ configurations, whereas statistical rules are given for the other residues.  相似文献   

3.
Ghosh D  Lee KH  Demeler B  Pecoraro VL 《Biochemistry》2005,44(31):10732-10740
Investigators have studied how proteins enforce nonstandard geometries on metal centers to assess the question of how protein structures can define the coordination geometry and binding affinity of an active-site metal cofactor. We have shown that cysteine-substituted versions of the TRI peptide series [AcG-(LKALEEK)(4)G-NH(2)] bind Hg(II) and Cd(II) in geometries that are different from what is normally found with thiol ligands in aqueous solution. A fundamental question has been whether this structural perturbation is due to protein influence or a change in the metal geometry preference. To address this question, we have completed linear free-energy analyses that correlate the association of three-stranded coiled coils in the absence of a metal with the binding affinity of the peptides to the heavy metals, Hg(II) and Cd(II). In this paper, six new members of this family have been synthesized, replacing core leucine residues with smaller and less hydrophobic residues, consequently leading to varying degrees of self-association affinities. At the same time, studies with some smaller and longer sequenced peptides have also been examined. All of these peptides are seen to sequester Hg(II) and Cd(II) in an uncommon trigonal environment. For both metals, the binding is strong with micromolar dissociation constants. For binding of Hg(II) to the peptides, the dissociation constants range from 2.4 x 10(-)(5) M for Baby L12C to 2.5 x 10(-)(9) M for Grand L9C for binding of the third thiolate to a linear Hg(II)(pep)(2) species. The binding of Hg(II) to the peptide Grand L9C is similar in energetics for metal binding in the metalloregulatory protein, mercury responsive (merR), displaying approximately 50% trigonal Hg(II) formation at nanomolar metal concentrations. Approximately, 11 kcal/mol of the Hg(II)(Grand L9C)(3)(-) stability is due to peptide interactions, whereas only 1-4 kcal/mol stabilization results from Hg(II)(RS)(2) binding the third thiolate ligand. This further validates the hypothesis that the favorable tertiary interactions in protein systems such as merR go a long way in stabilizing nonnatural coordination environments in biological systems. Similarly, for the binding of Cd(II) to the TRI family, the dissociation constants range from 1.3 x 10(-)(6) M for Baby L9C to 8.3 x 10(-)(9) M for TRI L9C, showing a similar nature of stable aggregate formation.  相似文献   

4.
Kwok SC  Hodges RS 《Biopolymers》2004,76(5):378-390
The de novo design and biophysical characterization of three series of two-stranded alpha-helical coiled coils with different chain lengths are described. Our goal was to examine how increasing chain length would affect protein folding and stability when one or more heptad repeat(s) of K-A-E-A-L-E-G (gabcdef) was inserted into the central region of different coiled-coil host proteins. This heptad was designed to maintain the continuous 3-4 hydrophobic repeat of the coiled-coil host and introduce an Ala and Leu residue in the hydrophobic core at the a and d position, respectively, and a pair of stabilizing interchain ionic i to i' + 5 (g to e') interactions per heptad inserted. The secondary structures of the three series of disulfide-bridged polypeptides were studied by CD spectroscopy and their stabilities determined by chemical and thermal denaturation. The results showed that successive insertions of this heptad systematically decreased the stability of all the coiled coils studied regardless of the overall initial stability of the host coiled coil. These observations are in contrast to the generally accepted implication that the folding and stability of coiled coils are enhanced with increasing chain length. Our results imply that, in these examples where an Ala and Leu hydrophobic residue were introduced into the coiled-coil core per inserted heptad, there was still insufficient stability to overcome unfavorable entropy associated with chain length extension, even though the inserted heptad contained the most stabilizing hydrophobic residue (Leu) at position d and stabilizing ionic attractions.  相似文献   

5.
Campbell KM  Lumb KJ 《Biochemistry》2002,41(22):7169-7175
The coiled coil is an attractive target for protein design. The helices of coiled coils are characterized by a heptad repeat of residues denoted a to g. Residues at positions a and d form the interhelical interface and are usually hydrophobic. An established strategy to confer structural uniqueness to two-stranded coiled coils is the use of buried polar Asn residues at position a, which imparts dimerization and conformational specificity at the expense of stability. Here we show that polar interactions involving buried position-a Lys residues that can interact favorably only with surface e' or g' Glu residues also impart structural uniqueness to a designed heterodimeric coiled coil with the nativelike properties of sigmoidal thermal and urea-induced unfolding transitions, slow hydrogen exchange and lack of ANS binding. The position-a Lys residues do not, however, confer a single preference for helix orientation, likely reflecting the ability of Lys at position a to from favorable interactions with g' or e' Glu residues in the parallel and antiparallel orientations, respectively. The Lys-Glu polar interaction is less destabilizing than the Asn-Asn a-->a' interaction, presumably reflecting a higher desolvation penalty associated with the completely buried polar position-a groups. Our results extend the range of approaches for two-stranded coiled-coil design and illustrate the role of complementing polar groups associated with buried and surface positions of proteins in protein folding and design.  相似文献   

6.
The coiled‐coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled‐coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a “stutter,” a deviation of the idealized heptad repeat that is found in the central coiled‐coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter‐containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled‐coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH‐dependent coiled‐coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled‐coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH‐dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. Proteins 2014; 82:2220–2228. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
BACKGROUND: The parallel two-stranded alpha-helical coiled coil is the most frequently encountered subunit-oligomerization motif in proteins. The simplicity and regularity of this motif have made it an attractive system to explore some of the fundamental principles of protein folding and stability and to test the principles of de novo design. RESULTS: The X-ray crystal structure of the 18-heptad-repeat alpha-helical coiled-coil domain of the actin-bundling protein cortexillin I from Dictyostelium discoideum is a tightly packed parallel two-stranded alpha-helical coiled coil. It harbors a distinct 14-residue sequence motif that is essential for coiled-coil formation, and is a prerequisite for the assembly of cortexillin I. The atomic structure reveals novel types of ionic coiled-coil interactions. In particular, the structure shows that a characteristic interhelical and intrahelical salt-bridge pattern, in combination with the hydrophobic interactions occurring at the dimer interface, is the key structural feature of its coiled-coil trigger site. CONCLUSIONS: The knowledge gained from the structure could be used in the de novo design of alpha-helical coiled coils for applications such as two-stage drug targeting and delivery systems, and in the design of coiled coils as templates for combinatorial helical libraries in drug discovery and as synthetic carrier molecules.  相似文献   

10.
House dust mites are the most important source of indoor allergens and cause allergic diseases. Our studies here suggest that the group 5 allergen from Dermatophagoides pteronyssinus (Der p 5) is monomeric at neutral pH, but forms filaments at low pH. Circular dichroism measurements show Der p 5 is a helical protein, and the protein sequence reveals Der p 5 contains coiled-coil helices. The acid-induced filament assembly could be explained in part by the high content of charged residues (40%) in the coiled-coil structure. Interestingly, some of the known Dermatophagoides allergens also contain a heptad repeat, which could potentially form coiled coils. Therefore, coiled-coil helices may be one of the common structural motifs of mite allergens that contribute to their allergenicity.  相似文献   

11.
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.  相似文献   

12.
13.
Shu W  Ji H  Lu M 《Biochemistry》1999,38(17):5378-5385
The envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) consists of a complex of two noncovalently associated subunits, gp120 and gp41. Formation of gp120/gp41 oligomers is thought to be dependent on a 4-3 hydrophobic (heptad) repeat located in the amino-terminal region of the gp41 molecule. We have investigated the role of this heptad repeat in determining the oligomeric structure of gp41 by introducing its buried core residues into the first (a) and fourth (d) positions of the GCN4 leucine-zipper dimerization domain. The mutant peptides fold into trimeric, helical structures, as shown by circular dichroism and equilibrium sedimentation centrifugation. The 2.4 A resolution crystal structure of one such trimer reveals a parallel three-stranded, alpha-helical coiled coil. Thus, the buried core residues from the gp41 heptad repeat direct trimer formation. We suggest that the conserved amino-terminal heptad repeat within the gp41 ectodomain possesses trimerization specificity.  相似文献   

14.
Coiled coils are a fundamental emergent motif in proteins found in structural biomaterials, consisting of α-helical secondary structures wrapped in a supercoil. A fundamental question regarding the thermal and mechanical stability of coiled coils in extreme environments is the sequence of events leading to the disassembly of individual oligomers from the universal coiled-coil motifs. To shed light on this phenomenon, here we report atomistic simulations of a trimeric coiled coil in an explicit water solvent and investigate the mechanisms underlying helix unfolding and coil unzipping in the assembly. We employ advanced sampling techniques involving steered molecular dynamics and metadynamics simulations to obtain the free-energy landscapes of single-strand unfolding and unzipping in a three-stranded assembly. Our comparative analysis of the free-energy landscapes of instability pathways shows that coil unzipping is a sequential process involving multiple intermediates. At each intermediate state, one heptad repeat of the coiled coil first unfolds and then unzips due to the loss of contacts with the hydrophobic core. This observation suggests that helix unfolding facilitates the initiation of coiled-coil disassembly, which is confirmed by our 2D metadynamics simulations showing that unzipping of one strand requires less energy in the unfolded state compared with the folded state. Our results explain recent experimental findings and lay the groundwork for studying the hierarchical molecular mechanisms that underpin the thermomechanical stability/instability of coiled coils and similar protein assemblies.  相似文献   

15.
16.
Hillar A  Tripet B  Zoetewey D  Wood JM  Hodges RS  Boggs JM 《Biochemistry》2003,42(51):15170-15178
Electron paramagnetic resonance spectroscopy was used to determine relative peptide orientation within homodimeric, alpha-helical coiled-coil structures. Introduction of cysteine (Cys) residues into peptides/proteins for spin labeling allows detection of their oligomerization from exchange broadening or dipolar interactions between residues within 25 A of each other. Two synthetic peptides containing Cys substitutions were used: a 35-residue model peptide and the 30-residue ProP peptide. The model peptide is known to form a stable, parallel homodimeric coiled coil, which is partially destabilized by Cys substitutions at heptad a and d positions (peptides C30a and C33d). The ProP peptide, a 30-residue synthetic peptide, corresponds to residues 468-497 of osmoregulatory transporter ProP from Escherichia coli. It forms a relatively unstable, homodimeric coiled coil that is predicted to be antiparallel in orientation. Cys was introduced in heptad g positions of the ProP peptide, near the N-terminus (K473C, creating peptide C473g) or closer to the center of the sequence (E480C, creating peptide C480g). In contrast to the destabilizing effect of Cys substitution at the core heptad a or d positions of model peptides C30a and C33d, circular dichroism spectroscopy showed that Cys substitutions at the heptad g positions of the ProP peptide had little or no effect on coiled-coil stability. Thermal denaturation analysis showed that spin labeling increased the stability of the coiled coil for all peptides. Strong exchange broadening was detected for both C30a and C33d, in agreement with a parallel structure. EPR spectra of C480g had a large hyperfine splitting of about 90 G, indicative of strong dipole-dipole interactions and a distance between spin-labeled residues of less than 9 A. Spin-spin interactions were much weaker for C473g. These results supported the hypothesis that the ProP peptide primarily formed an antiparallel coiled coil, since formation of a parallel dimer should result in similar spin-spin interactions for the spin-labeled Cys at both sites.  相似文献   

17.
Alpha-helical coiled coils represent a widespread protein structure motif distinguished by a seven-residue periodicity of apolar residues in the primary sequence. A characteristic "knobs-into-holes" packing of these residues into a hydrophobic core results in a superhelical, usually left-handed, rope of two or more alpha-helices. Such a geometry can be parameterized. For this purpose, a new computer program, TWISTER, was developed. With the three-dimensional coordinates as input, TWISTER uses an original algorithm to determine the local coiled-coil parameters as a function of residue number. In addition, heptad positions are assigned based on structural criteria. It is known that frequently encountered discontinuities in the heptad repeat, such as stutters and skips, can be tolerated within a continuous coiled coil but result in a local distortion of its geometry. This was explored in detail with the help of TWISTER for several two- and three-stranded coiled coils. Depending on the particular protein, stutters were found to be compensated locally by an unwinding of the superhelix, alpha-helical unwinding, or both. In the first case, there is often a local switch from a left-handed to a right-handed superhelix. In general, the geometrical distortion is confined to about two alpha-helical turns at either side of the stutter. Furthermore, stutters result in a local increase of the coiled-coil radius.  相似文献   

18.
19.
We describe here a systematic investigation into the role of position a in the hydrophobic core of a model coiled-coil protein in determining coiled-coil stability and oligomerization state. We employed a model coiled coil that allowed the formation of an extended three-stranded trimeric oligomerization state for some of the analogs; however, due to the presence of a Cys-Gly-Gly linker, unfolding occurred from the same two-stranded monomeric oligomerization state for all of the analogs. Denaturation from a two-stranded state allowed us to measure the relative contribution of 20 different amino acid side chains to coiled-coil stability from chemical denaturation profiles. In addition, the relative hydrophobicity of the substituted amino acid side chains was assessed by reversed-phase high-performance liquid chromatography and found to correlate very highly (R = 0.95) with coiled-coil stability. We also determined the effect of position a in specifying the oligomerization state using ultracentrifugation as well as high-performance size-exclusion chromatography. We found that nine of the analogs populated one oligomerization state exclusively at peptide concentrations of 50 microM under benign buffer conditions. The Leu-, Tyr-, Gln-, and His-substituted analogs were found to be exclusively three-stranded trimers, while the Asn-, Lys-, Orn-, Arg-, and Trp-substituted analogs formed exclusively two-stranded monomers. Modeling results for the Leu-substituted analog showed that a three-stranded oligomerization state is preferred due to increased side-chain burial, while a two-stranded oligomerization state was observed for the Trp analog due to unfavorable cavity formation in the three-stranded state.  相似文献   

20.
We examined GenBank sequence files with a heptad repeat analysis program to assess the phylogenetic occurrence of coiled coil proteins, how heptad repeat domains are organized within them, and what structural/functional categories they comprise. Of 102,007 proteins analyzed, 5.95% (6,074) contained coiled coil domains; 1.26% (1,289) contained “extended” (> 75 amino acid) domains. While the frequency of proteins containing coiled coils was surprisingly constant among all biota, extended coiled coil proteins were fourfold more frequent in the animal kingdom and may reflect early events in the divergence of plants and animals. Structure/function categories of extended coils also revealed phylogenetic differences. In pathogens and parasites, many extended coiled coil proteins are external and bind host proteins. In animals, the majority of extended coiled coil proteins were identified as constituents of two protein categories: 1) myosins and motors; or 2) components of the nuclear matrix-intermediate filament scaffold. This scaffold, produced by sequential extraction of epithelial monolayers in situ, contains only 1–2% of the cell mass while accurately retaining morphological features of living epithelium and is greatly enriched in proteins with extensive, interrupted coiled coil forming domains. The increased occurrence of this type of protein in Metazoa compared with plants or protists leads us to hypothesize a tissue-wide matrix of coiled coil interactions underlying metazoan differentiated cell and tissue structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号