首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Moths and butterflies flying in search of mates risk detection by numerous aerial predators; under the cover of night, the greatest threat will often be from insectivorous bats. During such encounters, the toxic dogbane tiger moth, Cycnia tenera uses the received intensity, duration and emission pattern of the bat''s echolocation calls to determine when, and how many, defensive ultrasonic clicks to produce in return. These clicks, which constitute an acoustic startle response, act as warning signals against bats in flight. Using an integrated test of stimulus generalization and dishabituation, here we show that C. tenera is able to discriminate between the echolocation calls characteristic of a bat that has only just detected it versus those of a bat actively in pursuit of it. We also show that C. tenera habituates more profoundly to the former stimulus train (‘early attack’) than to the latter (‘late attack’), even though it was initially equally responsive to both stimuli. Matched sensory and behavioural data indicate that reduced responsiveness reflects habituation and is not merely attributable to sensory adaptation or motor fatigue. In search of mates in the face of bats, C. tenera''s ability to discriminate between attacking bats representing different levels of risk, and to habituate less so to those most dangerous, should function as an adaptive cost–benefit trade-off mechanism in nature.  相似文献   

2.
During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.  相似文献   

3.
While the evasive responses of many flying acoustic insects to aerial‐hawking bats are duly recognized and studied, the responses of non‐aerial insects to gleaning bats are generally overlooked. It has been assumed that acoustic insects are deaf to these predators because gleaning bat echolocation calls are typically low in amplitude, brief (1–3 ms) and very high in frequency (>60 kHz). We tested this assumption in a series of playback experiments with a moth (Achroia grisella) that uses hearing in both predator evasion and mating. We report that ultrasound pulses ≥78 dB peSPL (peak equivalent sound pressure level) and ≥1 ms in duration inhibit stationary males from broadcasting their own ultrasonic advertisement calls, provided that the pulsed stimuli are delivered at a repetition rate ≤30/s. Further analyses suggest that inhibition by pulsed ultrasound comprises two processes performed serially. First, a startle response with a latency <50 ms is elicited by a single pulse ≥1 ms duration. Here, a male misses broadcasting several calls over a 50–100 ms interval. Secondly, the startle may be extended as a silence response lasting several to many seconds if subsequent pulses occur at a rate ≤30/s. Call inhibition cannot represent a simple response to acoustic power because of the inverse interaction between pulse duration and rate. On the other hand, the temporal and energy characteristics of inhibitory stimuli match those of gleaning bat echolocation calls, and we infer that inhibition is a specialized defensive behavior by which calling males may avoid detection by eavesdropping bats.  相似文献   

4.
We recorded and characterized the echolocation calls emitted by the common vampire bat Desmodus rotundus during foraging in natural habitats in Chile. Signal design typically shows multiple harmonics consisting of a brief quasi-constant frequency (QCF) component at the beginning of the pulse followed by a downward frequency modulated component. Calls are characterized by long durations (5.5 ms) and emitted as single pulses or in groups of 2–3 pulses at a repetition rate of 29 Hz. The higher frequency ranges (85–35 kHz) and the unusual QCF component that characterized multiharmonic signals of free-flying D. rotundus in Chile is a remarkable feature for acoustic identification with other Chilean bats.  相似文献   

5.
The predation pressure of the greater horseshoe bat, Rhinolophus ferrumequinum, on the diapausing population of the noctuid moth, Goniocraspidum preyeri, was examined at an abandoned mine in central Japan. These bats did not prey on the moths in summer. The number of moths preyed on was largest in March. More than 60% of the diapausing moths were eaten by only three or four bats, which accounted for over 90% of all the moth deaths. This moth was an important source of food at the end of the hibernating period when the bat had already used most of its stored subcutaneous fat. The predation on G. preyeri may have raised the overwintering success rate of R. ferrumequinum.  相似文献   

6.
Echolocating bats and eared moths are a model system of predator–prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats'' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths'' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.  相似文献   

7.
Plant–pollinator interactions are critical to ecosystems. However, when artificial nectar feeders are available in an area, they could draw pollinators away from plants. We tested the effects of artificial nectar feeders in an Ecuadorian cloud forest on four aspects of bat–plant interactions: (1) bat relative abundance; (2) bat pollen loads; (3) flower visitation rates, and (4) breeding success of a bat‐pollinated species (Burmeistera glabrata). We divided the study site into areas close to (~30 m) and far from (~500 m) three different feeder sites. At each distance, we captured nectar bats (Anoura caudifer, Anoura cultrata, and Lonchophylla robusta) to estimate their relative abundance and to collect pollen from fur and fecal samples. We also videotaped flowers to estimate bat visitation rates and recorded different breeding success variables of B. glabrata. We found that areas close to feeders have higher relative bat abundance by a factor of 40. In spite of this, the presence of feeders did not affect bat pollen loads, nor the flower visitation rates and breeding success of B. glabrata. Interestingly, there were differences in pollen loads between the three bat species, in that L. robusta individuals rarely carried pollen and were only captured near feeders.  相似文献   

8.
Nucleotide sequences of the nuclear SSU rDNA and ITS1 are presented as a defined genetic marker for Porphyra tenera as a species. Exon nucleotide sequences were identical within all the P. tenera specimens. Intron nucleotide sequences varied between populations. The introns and ITS1 variations are presented as defined genetic markers to establish the Porphyra tenera strains. Wild-collected thalli identified by morphological systematics, from five populations of Porphyra tenera throughout Japan, were discriminated by comparing sequences of the various regions utilizing the results of this and previous studies.  相似文献   

9.
Global change is expected to modify the frequency and magnitude of defoliating insect outbreaks in forest ecosystems. Bats are increasingly acknowledged as effective biocontrol agents for pest insect populations. However, a better understanding is required of whether and how bat communities contribute to the resilience of forests to man- and climate-driven biotic disturbances. We studied the responses of forest insectivorous bats to a major pine defoliator, the pine processionary moth pityocampa, which is currently expanding its range in response to global warming. We used pheromone traps and ultrasound bat recorders to estimate the abundance and activity of moths and predatory bats along the edge of infested pine stands. We used synthetic pheromone to evaluate the effects of experimentally increased moth availability on bat foraging activity. We also evaluated the top-down regulation of moth population by estimating T. pityocampa larval colonies abundance on the same edges the following winter. We observed a close spatio-temporal matching between emergent moths and foraging bats, with bat activity significantly increasing with moth abundance. The foraging activity of some bat species was significantly higher near pheromone lures, i.e. in areas of expected increased prey availability. Furthermore moth reproductive success significantly decreased with increasing bat activity during the flight period of adult moths. These findings suggest that bats, at least in condition of low prey density, exhibit numerical and functional responses to a specific and abundant prey, which may ultimately result in an effective top-down regulation of the population of the prey. These observations are consistent with bats being useful agents for the biocontrol of insect pest populations in plantation forests.  相似文献   

10.
1. Interneurones 501 and 504 are identified sound-sensitive interneurones in the pterothoracic ganglion of the noctuid moth Noctua pronuba. Both neurones receive monosynaptic input from the A1 afferent and experiments with current injection suggest that the synapse is chemical. The EPSPs evoked in either IN 501 or 504 by the A1 afferent do not facilitate. 2. Temporal integration in INs 501 and 504 was compared by presenting the moth with tones at repetition rates found in the search, approach and terminal phases of the echolocating call of a hunting bat. INs 501 and 504 differ in their capacity to resolve stimulus repetition rates because the mean decay times of their compound EPSPs differ by a factor of three, although both interneurones receive monosynaptic input from the A1 afferent. 3. The features extracted from the authentic, prerecorded, call of an echolocating bat at the level of the pterothoracic ganglion were examined by recording sequentially from a range of interneurones in the same preparation. The capacity of INs 501 and 504 to encode the various phases of the call was examined in the light of their measured mean decay times and related to the avoidance behaviour of the insect.  相似文献   

11.
To successfully negotiate a complex environment, an animal must control the timing of motor behaviors in coordination with dynamic sensory information. Here, we report on adaptive temporal control of vocal–motor behavior in an echolocating bat, Eptesicus fuscus, as it captured tethered insects close to background vegetation. Recordings of the bat's sonar vocalizations were synchronized with high-speed video images that were used to reconstruct the bat's three-dimensional flight path and the positions of target and vegetation. When the bat encountered the difficult task of taking insects as close as 10–20 cm from the vegetation, its behavior changed significantly from that under open room conditions. Its success rate decreased by about 50%, its time to initiate interception increased by a factor of ten, and its high repetition rate “terminal buzz” decreased in duration by a factor of three. Under all conditions, the bat produced prominent sonar “strobe groups,” clusters of echolocation pulses with stable intervals. In the final stages of insect capture, the bat produced strobe groups at a higher incidence when the insect was positioned near clutter. Strobe groups occurred at all phases of the wingbeat (and inferred respiration) cycle, challenging the hypothesis of strict synchronization between respiration and sound production in echolocating bats. The results of this study provide a clear demonstration of temporal vocal–motor control that directly impacts the signals used for perception.  相似文献   

12.
We studied the influence of avian seed dispersal on the structuring of genetic diversity in a population of a tropical tree, Ocotea tenera (Lauraceae). The seeds of O. tenera are principally dispersed by four, relatively specialized, fruit-eating bird species (emerald toucanets, keel-billed toucans, resplendent quetzals, and three-wattled bellbirds). We found high genetic diversity within the overall population and significant, nonrandom structuring of that diversity among subpopulations. Subpopulations contained members of several sibling groups, and most saplings within subpopulations were shown not to be the progeny of adult trees within the same subpopulation. Our data indicate that O. tenera subpopulations are founded with several seeds from few maternal families, and that this mode of establishment is an important determinant of population genetic architecture.  相似文献   

13.
The acoustic structure of echolocation pulses emitted by Japanese pipistrellePipistrellus abramus (Temminck, 1840) bats during different phases of aerial hawking is described here for the first time. Behavioural observations of the foraging flight in conjunction with acoustical analysis of echolocation pulses indicated a flight path consisting of four distinct phases following the reconnaissance or search phase. Short (∼4.68 ms) and relatively broadband frequencymodulated (FM) pulses (∼23.55 kHz bandwidth) were emitted at a repetition rate of 15 Hz during presumed target approach. Presumed insect capture consisted of an early and a late buzz phase. Both buzz types were emitted at high repetition rates (111 Hz in early to 222 Hz in late) and consisted of very short, broadband FM pulses (1.26 ms in early to 0.3 ms in late). There was also a characteristically sharp drop in both the peak and terminal frequencies of each echolocation pulse during the transition from early to late buzz. No pulses were recorded during the final phase of foraging referred to as a “post-buzz pause”. Thus the foraging behaviour of this species consisted of five sequential phases involving four broad types of echolocation pulses.  相似文献   

14.
To allow to discriminate rapidly the strains of Porphyra tenera var. tamatsuensis, cultivars of which grow more vigorously than strains of P. tenera var. tenera, strains of both varieties were examined by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis using mitochondrial DNA related to the ATP synthase F0 subunit 6 (ATP6) gene. The lengths of all sequences in this region of three strains of each variety were 670 bp and had just a single nucleotide substitution. Digestion with the restriction enzyme of TaaI yielded three visible bands which appeared in the three strains of P. tenera var. tamatsuensis, whereas two bands appeared in the three strains of P. tenera var. tenera. We therefore conclude that PCR-RFLP analysis is a valuable tool for discrimination of P. tenera var. tamatsuensis among the stock of P. tenera strains used for mariculture.  相似文献   

15.
Porphyra is a commercially valuable source of food and drugs and an important model organism for algal research. However, genetic research on Porphyra tenera has been limited by a lack of a heterologous gene expression system. In this study, we isolated native promoter PtHSP70 for the efficient expression of foreign genes in this organism. This promoter lies approximately 1 kb upstream of the heat shock protein 70 coding sequence and was isolated using adapter ligation-mediated genomic polymerase chain reaction. Promoter activity was evaluated using the synthetic GUS gene (PyGUS) with optimized codons for Porphyra yezoensis. Interestingly, the PtHSP70 promoter allowed the efficient expression of PyGUS in P. tenera and P. yezoensis, whereas the PyGAPDH promoter from P. yezoensis was not fully functional in P. tenera. The PtHSP70 promoter may have a more conserved regulatory mechanism than the PyGAPDH promoter between these species, suggesting that PtHSP70 could serve as a universal promoter for Porphyra species. We also established an efficient transient transformation system for P. tenera by evaluating transformation parameters including gold particle quantity, helium and vacuum pressure, developmental stages of leafy gametophytes, and target distance. Under optimal conditions of transient transformation, the frequency of GUS expression was determined by histochemical staining as 30–50 cells per bombardment. In addition, PyGUS expression was detected during the regeneration of monospores in P. tenera, indicating successful genetic transformation. Therefore, the new transient transformation system using the PtHSP70 promoter can be used for foreign gene expression in P. tenera, which may advance the development of P. tenera as a model organism.  相似文献   

16.
Porphyra tenera Kjellman, widely cultivated in nori farms before the development of artificial seeding, is currently listed as an endangered species in Japan. To confirm whether a wild‐collected gametophytic blade was P. tenera or the closely related species P. yezoensis Ueda, morphological observations and molecular analyses were made on the pure line HGT‐1 isolated from a wild blade. This pure line was identified as P. tenera based on detailed morphological features. Sequences of the nuclear internal transcribed spacer region 1 and the plastid RUBISCO spacer revealed that P. tenera HGT‐1 was clearly different from P. yezoensis f. narawaensis Miura, the main species cultivated in Japan. PCR‐RFLP analysis of the internal transcribed spacer region was found to be a convenient method for rapid discrimination between P. tenera and cultivated P. yezoensis. The restriction patterns generated by the endonucleases Dra I and Hae III were useful for differentiating between both gametophytic and conchocelis stages of P. tenera HGT‐1 and P. yezoensis f. narawaensis strains. Thus, PCR‐RFLP analysis will serve as a valuable tool for rapid species identification of cultivated Porphyra strains, culture collections of Porphyra strains for breeding material and conservation of biodiversity, and, as codominant cleaved amplified polymorphic sequence markers for interspecific hybridization products between P. tenera and P. yezoensis f. narawaensis. Under the same culture conditions, rate of blade length increase and the blade length‐to‐width ratio were lower in P. tenera HGT‐1 than in P. yezoensis f. narawaensis HG‐4. The HGT‐1 became mature more rapidly than HG‐4 and had thinner blades.  相似文献   

17.
Progeny arrays of Ocotea tenera (Lauraceae), a gynodioecious tree endemic to Costa Rica, were electrophoretically surveyed for allozyme variation to estimate the outcrossing rate in the overall population and to test for differences in outcrossing rates between hermaphroditic and female trees. Multilocus outcrossing rate estimates across 3 yr indicated O. tenera predominantly outcrosses. However, significant heterogeneity in single-locus outcrossing rates was found among loci. Two loci (Fe1, Fe2) gave high outcrossing estimates, and a third locus (Gdh) gave much lower outcrossing estimates. Heterogeneity in Gdh pollen allele frequencies, consanguineous matings, and selection against homozygous zygote genotypes at the Fe1 and Fe2 loci are factors contributing to the discrepancy in outcrossing rate estimates among loci. There were no differences in the mating systems of hermaphroditic and female trees, which suggests that factors beyond prevention of self-fertilization may have also promoted the evolution of gynodioecy in O. tenera.  相似文献   

18.
Summary The greater horseshoe bat (Rhinolophus ferrumequinum) emits echolocation sounds consisting of a long constant-frequency (CF) component preceeded and followed by a short frequency-modulated (FM) component. When an echo returns with an upward Doppler-shift, the bat compensates for the frequency-shift by lowering the emitted frequency in the subsequent orientation sounds and stabilizes the echo image. The bat can accurately store frequency-shift information during silent periods of at least several minutes. The stored frequency-shift information is not affected by tone bursts delivered during silent periods without an overlap with an emitted orientation sound. The system for storage of Doppler-shift information has properties similar to a sample and hold circuit with sampling at vocalization time and with a rather flat slewing rate for the stored frequency information.Supported by Stiftung Volkswagenwerk, grant No. 111858, Deutsche Forschungsgemeinschaft, grant No. Ne 146/7, National Science Foundation (USA), grant No. GB-40018 and the Alexander von Humboldt-Stiftung.  相似文献   

19.
Basic economic models adapted from foraging theory predict that decisions in mate choice may be determined either by ‘best‐of‐n’ preference functions or by sequential rules incorporating acceptance thresholds. However, in some species, more complex determinations that incorporate versions of both protocols are found. To understand the functions of co‐occurring protocols, we studied mating decisions in the lesser wax moth, Achroia grisella (Lepidoptera: Pyralidae), an acoustic species in which females prefer males, the advertisement songs of which are delivered at relatively high ‘pulse‐pair’ rates. In addition to this preference, A. grisella females avoid mating with a male, the song of which does not exceed a minimum pulse‐pair rate, and they hold to this criterion even when no other singing males are present and regardless of song amplitude. Thus, mating decisions are not simply based on acoustic power (pulse‐pair rate × amplitude). We recorded male songs and female responses in an A. grisella population and found that male pulse‐pair rates showed a median of 87/s and ranged from 50 to 115/s, while female acceptance thresholds for male song showed a median of 60/s and ranged from 30 to 105/s. The distributions of thresholds were approximately normal and were not significantly skewed toward the right. Male song rates declined slightly with age, but female thresholds remained stable over the adult lifespan. Both the male and female traits showed significant repeatability within individuals. Whereas phylogenetic inference indicates that hearing in pyralid moths originated as a means of avoiding predation by insectivorous bats, the specific distribution of female acceptance thresholds suggests that currently this protocol does not primarily function to preclude inappropriate, and potentially lethal, responses to bat echolocations: pulse rates in the searching‐phase echolocations used by either aerial‐hawking or substrate‐gleaning bats mostly range from 10 to 20/s, and the lack of positive skew in the distribution of thresholds indicates an absence of directional selection from the left. Rather, we infer that thresholds augment preference functions in A. grisella by precluding mating with males which are markedly inferior in a critical song character. In general, co‐occurring protocols may be important where population density fluctuates markedly, as preference functions may be ineffective in preventing mating with inferior males when density is low.  相似文献   

20.
为探究恒频-调频蝙蝠下丘神经元恢复周期特点及其对声脉冲跟随率的影响,实验采用模拟的大蹄蝠(Hipposideros armiger)自然状态下的恒频-调频发声信号为声刺激,在5只听力正常的大蹄蝠上记录了下丘神经元的声反应和恢复周期(n = 93).结果发现,根据神经元恢复率达50%时的双声刺激间隔(inter pulse interval,IPI),可将其分为长时恢复型(long recovery,LR;47.4%)、中等时间恢复型(moderate recovery,MR;35.1%)和短时恢复型(short recovery,SR;17.5%).每种类型依据其恢复率随IPI增加而呈现的不同变化又可进一步分为单IPI反应区神经元,多IPI反应区神经元,以及单调IPI反应神经元.LR,MR和SR型神经元恢复率达50%时的平均IPI分别为(64.0 ± 24.8),(19.6 ± 5.8)和(7.1 ± 2.4) ms (P < 0.001),相对应的平均理论每秒声脉冲数分别为(18.2 ± 7.0),(55.4 ± 15.7)和(171.3 ± 102.9) Hz (P < 0.001).结果提示,单IPI和多IPI反应区神经元具有特殊IPI反应特性,能对蝙蝠捕食和巡航期间所处的时相做出准确判断,而单调IPI反应神经元对IPI变化的敏感性较强,但时相判断性较差.另外LR,MR和SR型神经元恢复周期和理论脉冲跟随率的平均结果均能与这种蝙蝠回声定位期间3个时相的发声行为相匹配,且神经元恢复周期参与决定声脉冲跟随率,满足了蝙蝠巡航、捕食的行为学需要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号