首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Candida shehatae cells pre-grown on D-xylose simultaneously consumed mixtures of D-xylose and D-glucose, under both non-growing (anoxic) and actively growing conditions (aerobic), to produce ethanol. The rate of D-glucose consumption was independent of the D-xylose concentration for cells induced on D-xylose. However, the D-xylose consumption rate was approximately three times lower than the D-glucose consumption rate at a 50% D-glucose: 50% D-xylose mixture. Repression was not observed (substrate utilization rates were approximately equal) when the percentage of D-glucose and D-xylose was changed to 22% and 78%, respectively. In fermentations with actively growing cells (50% glucose and D-xylose), ethanol yields from D-xylose increased, the % D-xylose utilized increased, and the xylitol yield was significantly reduced in the presence of D-glucose, compared to anoxic fermentations (YETOH,xylose = 0.2–0.40 g g−1, 75–100%, and Yxylitol = 0–0.2 g g−1 compared to YETOH,xylose = 0.15 g g−1, 56%, Yxylitol = 0.51 g g−1, respectively). To increase ethanol levels and reduce process time, fed-batch fermentations were performed in a single stage reactor employing two phases: (1) rapid aerobic growth on D-xylose (μ = 0.32 h−1) to high cell densities; (2) D-glucose addition and anaerobic conditions to produce ethanol (YETOH,xylose = 0.23 g g−1). The process generated high cell densities, 2 × 109 cells ml−1, and produced 45–50 g L−1 ethanol within 50 h from a mixture of D-glucose and D-xylose (compared to 30 g L−1 in 80 h in the best batch process). The two-phase process minimized loss of cell viability, increased D-xylose utilization, reduced process time, and increased final ethanol levels compared to the batch process. Received 23 February 1998/ Accepted in revised form 15 July 1998  相似文献   

2.
木糖的高效发酵是制约纤维素燃料乙醇生产的技术瓶颈之一,高性能发酵菌种的开发是本领域研究的重点。以木糖发酵的典型菌株休哈塔假丝酵母为材料,研究氮源配比、葡萄糖和木糖初始浓度、葡萄糖添加及典型抑制物等因素对其木糖利用和乙醇发酵性能的影响规律。结果表明,硫酸铵更适宜于木糖和葡萄糖发酵产乙醇。在摇瓶振荡发酵条件下,该酵母可发酵164.0 g/L葡萄糖生成61.9 g/L乙醇,糖利用率和乙醇得率分别为99.8%和74.0%;受酵母细胞膜上转运体系的限制,对木糖的最高发酵浓度为120.0 g/L,可生成45.7 g/L乙醇,糖利用率和乙醇得率分别达到94.8%和87.0%。休哈塔假丝酵母发酵木糖的主要产物为乙醇,仅生成微量的木糖醇;添加葡萄糖可促进木糖的利用;休哈塔假丝酵母在葡萄糖发酵时的乙酸和甲酸的耐受浓度分别为8.32和2.55 g/L,木糖发酵时的乙酸和甲酸的耐受浓度分别为6.28和1.15 g/L。  相似文献   

3.
Candida shehatae ATCC 22984, a xylose-fermenting yeast, showed an ability to produce ethanol in both glucose and xylose medium. Maximum ethanol produced by the yeast was 48.8?g/L in xylose and 52.6?g/L in glucose medium with ethanol yields that varied between 0.3 and 0.4?g/g depended on initial sugar concentrations. Xylitol was a coproduct of ethanol production using xylose as substrate, and glycerol was detected in both glucose and xylose media. Kinetic model equations indicated that growth, substrate consumption, and product formation of C. shehatae were governed by substrate limitation and inhibition by ethanol. The model suggested that cell growth was totally inhibited at 40?g/L of ethanol and ethanol production capacity of the yeast was 52?g/L, which were in good agreement with experimental results. The developed model could be used to explain C. shehatae fermentation in glucose and xylose media from 20 to 170?g/L sugar concentrations.  相似文献   

4.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

5.
采用Plackett-Burman (PB) 方法和中心组合设计 (Ccentral composit design,CCD) 对休哈塔假丝酵母Candida shehataeHDYXHT-01利用木糖发酵生产乙醇的工艺进行优化。PB试验设计与分析结果表明:硫酸铵、磷酸二氢钾、酵母粉和接种量是影响木糖乙醇发酵的4个关键因素,以乙醇产量为响应目标,采用CCD和响应面分析法 (Response surface methodology,RSM),确定了木糖乙醇发酵的最佳工艺为:硫酸铵1.73 g/L、磷酸二氢钾3.56 g/L、酵母粉2.62 g/L和接种量5.66%,其他发酵条件为:木糖80 g/L,MgSO4·7H2O 0.1 g/L,pH 5.0,培养温度30 ℃,装液量100 mL/250 mL,摇床转速140 r/min,发酵时间48 h,在该条件下发酵液中乙醇产量可以达到26.18 g/L,比未优化前提高了1.15倍。  相似文献   

6.
木糖的乙醇发酵一直被视为木质纤维原料生物转化产生乙醇的关键因素,休哈塔假丝酵母(Candidashehatae)是木糖发酵性能较好的天然酵母之一。对Candida shehatae HDYXHT-01进行了氦氖激光诱变和NTG诱变,力求选育出发酵木糖产乙醇能力强的菌株。氦氖激光诱变得到的突变株HN-3乙醇产量为17.03g/L,乙醇得率达到0.3393g/g,相比原始菌株提高20.36%。再对HN-3进行NTG诱变,得到的突变株NTG-2乙醇产量为24.20g/L,相比HN-3提高42.10%。进而对NTG-2菌株进行了摇瓶48h连续发酵试验,测得其乙醇产量、木糖利用率、乙醇得率和乙醇产率分别达到24.16g/L,69.26%,0.4360g/g和0.7075g/(L·h)。  相似文献   

7.
以C.shehataeTZ8为出发茵株,利用1%溶壁酶和1%蜗牛酶酶解1.5h,制备成C.shehataeTZ8原生质体,并对原生质体进行紫外诱变,以含不同浓度乙醇的木糖液体培养基培养进行初筛和复筛,获得一株遗传性能稳定、耐乙醇能力达5.5%(v/v)的蕾株C.shehataeTZ8-4,比初始菌株耐乙醇能力提高了2%。对突变株C.shehataeTZ8-4发酵性能的研究结果表明:C.shehataeTZ8-4发酵糖能力从80g/L(葡糖糖和木糖比为2:1)提高到120g/L,最大乙醇产量从27.41g/L提高到43.12g/L。  相似文献   

8.
9.
确定了酿酒酵母W5及休哈塔假丝酵母20335原生质体制备的最佳条件。选取不同脱壁预处理时间及不同酶解时间,对酿酒酵母W5、休哈塔假丝酵母20335进行原生质体制备和再生,比较制备率和再生率。确定脱壁预处理30 min后,以终浓度2%的蜗牛酶,30℃、100 r/min酶解处理15 min为双亲株原生质体制备的最佳条件。利用原生质体融合的方法,以酿酒酵母W5和休哈塔假丝酵母20335为亲本株,构建可以利用木糖生产生物乙醇的新型酿酒酵母融合株,该前期工作为W5、20335原生质体融合工作奠定了重要的基础,对于将木质纤维素原料转化为生物乙醇的研究具有极其重要的意义。  相似文献   

10.
A hemicellulosic hydrolysate was prepared with 0.3 M H2SO4 at 98 °C for 1 h. The total initial reducing sugar was maintained at 45 g l–1 by synthetic xylose supplementation. The seven detoxification methods were employed including either the single addition of solid CaO (to pH 10 or 6) or its combinations with zeolite shaking. Over-liming gave the hydrolysate that was most completely fermented by Pichia stipitis and Candida shehatae at 30 °C, pH 6, among the tested methods.  相似文献   

11.
高效发酵木糖生产乙醇酵母菌株的构建   总被引:3,自引:0,他引:3  
获得高效发酵木糖生产乙醇的酵母菌株是木质纤维素生物转化生产燃料乙醇的重要前提。在4%乙醇驯化的基础上,选择了乙醇耐性提高的休哈塔假丝酵母(Candida shehatae)CICC1766菌株进一步进行紫外诱变,得到了木糖发酵性能较强的呼吸缺陷型突变体,并与乙醇发酵性能良好的酿酒酵母(Saccharomyces cerevisiae)ATCC4126进行原生质体融合。采用单亲灭活法对休哈塔假丝酵母原生质体进行紫外灭活,在聚乙二醇(PEG)诱导下融合,对得到的融合子进行木糖发酵能力测定,选择到了一株能够更好地利用木糖产乙醇,并且木糖发酵性能比亲本得到明显提高的融合子F6,此融合子发酵50 g/L木糖,最高乙醇浓度达到18.75g/L,乙醇得率为0.375,达到理论转化值0.511的73.4%。与原始出发菌株CICC1766相比,乙醇产量提高了28%。  相似文献   

12.
13.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3–1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L −1·hr −1 were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.  相似文献   

14.
为了选育高效利用木糖、葡萄糖共发酵,并使乙醇产量有所提高的酿酒酵母工程菌株。以酿酒酵母Saccharomyces cerevisiae W5和休哈塔假丝酵母Candida shehatae 20335为亲本株,确定了双亲株原生质体灭活剂量,并进行原生质体融合获得融合子,用高效液相色谱(HPLC)测定融合子以木糖、葡萄糖单碳源及混合碳源发酵时的乙醇得率。结果表明,获得一株发酵性能优良的融合子HDY2-14,其利用木糖和葡萄糖单碳源发酵的乙醇得率分别为0.213g/g和0.257g/g,混合碳源发酵的乙醇得率为0.310g/g,其中混合碳源乙醇得率比亲本株W5和20335的乙醇得率分别提高了20.2%和15.2%。  相似文献   

15.
The effect on D-xylose utilization and the corresponding xylitol and ethanol production by Candida shehatae (ATCC 22984) were examined with different nitrogen sources. These included organic (urea, asparagine, and peptone) and inorganic (ammonium chloride, ammonium nitrate, ammonium sulphate, and potassium nitrate) sources. Candida shehatae did not grow on potassium nitrate. Improved ethanol production (Y(p/s), yield coefficient (grams product/grams substrate), 0.34) was observed when organic nitrogen sources were used. Correspondingly, the xylitol production was also higher with organic sources. Ammonium sulphate showed the highest ethanol:xylitol ratio (11.0) among all the nitrogen sources tested. The ratio of NADH- to NADPH-linked D-xylose reductase (EC 1.1.1.21) appeared to be rate limiting during ethanologenesis of D-xylose. The levels of xylitol dehydrogenase (EC 1.1.1.9) were also elevated in the presence of organic nitrogen sources. These results may be useful in the optimization of alcohol production by C. shehatae during continuous fermentation of D-xylose.  相似文献   

16.
Abstract

The effect of NADP+ and glucose-6-phosphate (G6P) on the biotransformation of D-xylose to xylitol by cells of Candida guilliermondii permeabilized with surfactant Triton X-100 was evaluated. The experimental runs were performed with 12 g L?1 of permeabilized cells and a reaction medium composed of Tris–HCl buffer (0.1 M pH 7), D-xylose (57 g L?1), and MgCl2.6H2O (5 mM). The levels of NADP+ (from 0.0 to 1.7 mM) and G6P (from 0.00 to 0.17 M) were varied according a 22-full factorial composed design. Under optimized conditions (NADP+ 0.5 mM and 0.05 M G6P), the xylitol volumetric productivity (QP) and yield factor (YP/S) predicted were 1.86 ± 0.03 g L?1 h? 1 and 0.64 ± 0.03 g g?1, respectively. These values were 94% and 19% higher than those obtained with unpermeabilized cells under fermentation conditions (0.97 g L?1 h?1 and 0.53 g g?1, respectively). On the basis of the results, it can be concluded that xylitol production by biotransformation with cells of C. guilliermondii permeabilized with Triton X-100 is a promising alternative to the fermentative process.  相似文献   

17.
18.
Summary These studies examined several process variables important in scaling up the fermentation of xylose by Candida shehatae. Inoculum age and cell density were particularly influential. Young (24-h) inocula fermented xylose to ethanol two to three times as fast as older (48- or 72-h) inocula. With all three inocula ages, the initial fermentation rates were essentially linear with cell density, up to 4 g dry wt cells L-1. Above that cell density, the ethanol production rate appeared to be oxygen limited, particularly with 24-h old cells. Aeration also played a role in xylose utilization. The fermentation proceeded under both aerobic and anaerobic conditions, but xylose was not completely utilized anaerobically. With aeration, 25% more ethanol was formed in about one third the time than without aeration. Ethanol yields were similar under the two conditions. Cell growth on xylose was observed in the absence of oxygen. Cells went through essentially one doubling in 24 h. Based on the sugar consumed, a Y ATP of 9.9 was obtained. Slow continuous feeding of glucose significantly increased the xylose utilization rate.Maintained in cooperation with the University of Wisconsin, Madison, Wisconsin, USA  相似文献   

19.
Candida shehatae NCL-3501 utilized glucose and xylose efficiently in batch cultures. The specific rate of ethanol production was higher with mixtures of glucose and xylose (0.64–0.83 g g–1 cells d–1) compared to that with individual sugars (0.38–0.58 g g–1 cells d–1). Although the optimum temperature for growth was 30°C, this strain grew and produced appreciable levels of ethanol at 45°C. A stable ethanol yield (0.40–0.43 g g–1 substrate utilized) was obtained between 10 g L–1 and 80 g L–1 of initial xylose concentration. Conversion efficiency was further improved by immobilization of the cells in calcium alginate beads. Free or immobilized cells ofC. shehatae NCL-3501 efficiently utilized sugars present in rice straw hemicellulose hydrolysate, prepared by two different methods, within 48 h. Ethanol yields of 0.45 g g–1 and 0.5 g g–1 from autohydrolysate, and 0.37 g g–1 from acid hydrolysate were produced by free and immobilized cells, respectively.  相似文献   

20.
The vitamin requirements of Candida shehatae for xylose fermentation   总被引:1,自引:0,他引:1  
Abstract The vitamin requirements of a strain of Candida shehatae for the fermentation of d -xylose was determined using a statistical procedure with a 23 factorial design. Biotin as well as thiamine exerted a dramatic stimulatory effect on the rate of ethanol production, coupled with a significant improvement in the ethanol yield. The greatest enhancement of the fermentation was found in the presence of both these vitamins. Pyridoxine exerted only a minor effect, but was essential for complete substrate utilization in the absence of either biotin or thiamine. Only biotin caused a significant increase in the growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号