首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanisms underlying the impacts of exotic plant invasions   总被引:37,自引:0,他引:37  
Although the impacts of exotic plant invasions on community structure and ecosystem processes are well appreciated, the pathways or mechanisms that underlie these impacts are poorly understood. Better exploration of these processes is essential to understanding why exotic plants impact only certain systems, and why only some invaders have large impacts. Here, we review over 150 studies to evaluate the mechanisms underlying the impacts of exotic plant invasions on plant and animal community structure, nutrient cycling, hydrology and fire regimes. We find that, while numerous studies have examined the impacts of invasions on plant diversity and composition, less than 5% test whether these effects arise through competition, allelopathy, alteration of ecosystem variables or other processes. Nonetheless, competition was often hypothesized, and nearly all studies competing native and alien plants against each other found strong competitive effects of exotic species. In contrast to studies of the impacts on plant community structure and higher trophic levels, research examining impacts on nitrogen cycling, hydrology and fire regimes is generally highly mechanistic, often motivated by specific invader traits. We encourage future studies that link impacts on community structure to ecosystem processes, and relate the controls over invasibility to the controls over impact.  相似文献   

2.
植物群落的生物多样性及其可入侵性关系的实验研究   总被引:16,自引:1,他引:16       下载免费PDF全文
 生物入侵已经成为一个普遍性的环境问题,并为许多学者所关注。尽管一些理论研究和观察表明生物多样性丰富的群落不容易受到外来种的入侵,但后来有些实验研究并没能证实两者的负相关性,多样性 可入侵性假说仍然是入侵生态学领域争论比较多的一个焦点。人为构建不同物种多样性和物种功能群多样性(C3 禾本科植物、C4植物、非禾本科草本植物和豆科植物)梯度的小尺度群落,把其它影响可入侵性的外在因子和多样性效应隔离开来,研究入侵种喜旱莲子草(Alternanthera philoxeroides)在不同群落里的入侵过程来验证多样性 可入侵性及其相关假说。研究结果显示,物种功能群丰富的群落可入侵程度较低,功能群数目相同而物种多样性不同的群落可入侵性没有显著性差异,功能群特征不同的群落也表现出可入侵性的差异,生活史周期短的单一物种群落和有着生物固氮功能的豆科植物群落可入侵程度较高,与喜旱莲子草属于同一功能群且有着相似生态位的土著种莲子草(A. sessilis)对入侵的抵抗力最强。实验结果表明,物种多样性和群落可入侵性并没有很显著的负相关,而是与物种特性基础上的物种功能群多样性呈负相关,群落中留给入侵种生态位的机会很可能是决定群落可入侵性的一个关键因子。  相似文献   

3.
Theoretical predictions and empirical studies suggest that resident species diversity is an important driver of community invasibility. Through trait-based processes, plants in communities with high resident species diversity occupy a wider range of ecological niches and are more productive than low diversity communities, potentially reducing the opportunities for invasion through niche preemption. In terrestrial plant communities, biotic ecosystem engineers such as earthworms can also affect invasibility by reducing leaf litter stocks and influencing soil conditions. In a greenhouse experiment, we simultaneously manipulated resident species diversity and earthworm presence to investigate independent and interactive effects of these two variables on the success of several invasive plants. Higher diversity of resident species was associated with lower biomass of invasives, with the effect mediated through resident species biomass. The presence of earthworms had a strong positive effect on the biomass of invasive species across all levels of resident species diversity and a weaker indirect negative effect via decreased soil moisture. Earthworms also weakened the positive correlation between resident species diversity and productivity. We did not observe any interactive effects of resident species biomass and earthworms on invasive species success. Partitioning the net biodiversity effect indicated that selection effects increased with resident species diversity whereas complementarity effects did not. Results suggest that managing for diverse forest communities may decrease the susceptibility of these communities to invasions. However, the presence of introduced earthworms in previously earthworm-free sites may undermine these efforts. Furthermore, future studies of plant community invasibility should account for the effects of introduced earthworms.  相似文献   

4.
We review and synthesize recent developments in the study of the invasion of communities in heterogeneous environments, considering both the invasibility of the community and impacts to the community. We consider both empirical and theoretical studies. For each of three major kinds of environmental heterogeneity (temporal, spatial and invader-driven), we find evidence that heterogeneity is critical to the invasibility of the community, the rate of spread, and the impacts on the community following invasion. We propose an environmental heterogeneity hypothesis of invasions, whereby heterogeneity both increases invasion success and reduces the impact to native species in the community, because it promotes invasion and coexistence mechanisms that are not possible in homogeneous environments. This hypothesis could help to explain recent findings that diversity is often increased as a result of biological invasions. It could also explain the scale dependence of the diversity–invasibility relationship. Despite the undoubted importance of heterogeneity to the invasion of communities, it has been studied remarkably little and new research is needed that simultaneously considers invasion, environmental heterogeneity and community characteristics. As a young field, there is an unrivalled opportunity for theoreticians and experimenters to work together to build a tractable theory informed by data.  相似文献   

5.
Recent experimental and simulation results, and competition‐based ecological theory, predict a simple relationship between species richness and the invasibility of communities at small spatial scales – likelihood of invasion decreases with increasing richness. Here we show data from 42 continuous years of sampling old field succession that reveal quite different dynamics of plant invasion. Contrary to experimental studies, when richness was important in explaining invasion probability, it was typically positively associated with species invasion. Invasion of several species had a unimodal response to resident species richness, which appeared to be a mixture of compositional influences and a richness effect. Interestingly, invasions by native and exotic species did not fundamentally differ. Control of species invasion in this system is individualistic, caused by a variety of community‐level mechanisms rather than a single prevailing richness effect.  相似文献   

6.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   

7.
Biological invasions can lead to extinction events in resident communities and compromise ecosystem functioning. We tested the effect of two widespread biodiversity measurements, genotypic richness and genotypic dissimilarity on community invasibility. We manipulated the genetic structure of bacterial communities (Pseudomonas fluorescens) and submitted them to invasion by Serratia liquefaciens. We show that the two diversity measures impact on invasibility via distinct and additive mechanisms. Genotypic dissimilarity of the resident communities linearly increased productivity and in parallel decreased invasion success, indicating that high dissimilarity prevents invasion through niche pre-emption. By contrast, genotypic richness exerted a hump-shaped effect on invasion and was linked to the production of toxins antagonistic to the invader. This effect peaked at intermediate richness, suggesting that high richness levels may increase invasibility. Invasibility could be well predicted by the combination of these two mechanisms, documenting that both genotypic richness and dissimilarity need to be considered, if we are to understand the biotic properties determining the susceptibility of ecosystems to biological invasions.  相似文献   

8.
Jeremy W. Fox 《Oikos》2008,117(8):1153-1164
When do initial conditions, which reflect the assembly history of a community, affect the final community state? Comparative field studies and recent theory suggest that initial conditions matter at high productivity, because uninvasible alternate stable states and assembly cycles are more likely at high productivity. However, this prediction and the mechanisms behind it have not been tested experimentally. An alternative hypothesis is that initial conditions are relatively unimportant, and that communities generally are comprised of species with appropriate traits, which might vary with productivity. I assembled communities of protists and rotifers in laboratory microcosms from a species‐rich, trophically‐diverse species pool using all possible combinations of two initial conditions and four productivity levels. After communities approached their final states, invasions by the species that initially failed to persist tested the invasibility of those final states and tested for assembly cycles. I also examined how local (within‐microcosm) diversity and regional diversity (total species richness of all microcosms of a given productivity level) varied with productivity. Comparative field work has used such scale‐dependent diversity–productivity relationships as evidence for effects of assembly history. Productivity had a modest effect on final pre‐invasion species composition, while initial conditions had a very weak effect. Most invasions failed, and the frequency of successful invasions and of post‐invasion extinctions did not vary with productivity. Instead, species that were present most frequently pre‐invasion were also the most successful invaders, and the least‐likely species to go extinct post‐invasion. Local and regional richness did not vary substantially with productivity. Overall, the results suggest that final communities are predictably comprised of species with appropriate traits, and are not an unpredictable outcome of initial conditions.  相似文献   

9.
Aim Predicting and preventing invasions depends on knowledge of the factors that make ecosystems susceptible to invasion. Current studies generally rely on non‐native species richness (NNSR) as the sole measure of ecosystem invasibility; however, species identity is a critical consideration, given that different ecosystems may have environmental characteristics suitable to different species. Our aim was to examine whether non‐native freshwater fish community composition was related to ecosystem characteristics at the landscape scale. Location United States. Methods We described spatial patterns in non‐native freshwater fish communities among watersheds in the Mid‐Atlantic region of the United States based on records of establishment in the U.S. Geological Survey’s Nonindigenous Aquatic Species Database. We described general relationships between non‐native species and ecosystem characteristics using canonical correspondence analysis. We clustered watersheds by non‐native fish community and described differences among clusters using indicator species analysis. We then assessed whether non‐native communities could be predicted from ecosystem characteristics using random forest analysis and predicted non‐native communities for uninvaded watersheds. We estimated which ecosystem characteristics were most important for predicting non‐native communities using conditional inference trees. Results We identified four non‐native fish communities, each with distinct indicator species. Non‐native communities were predicted based on ecosystem characteristics with an accuracy of 80.6%, with temperature as the most important variable. Relatively uninvaded watersheds were predicted to be invasible by the most diverse non‐native community. Main conclusions Non‐native species identity is an important consideration when assessing ecosystem invasibility. NNSR alone is an insufficient measure of invasibility because ecosystems with equal NNSR may not be equally invasible by the same species. Our findings can help improve predictions of future invasions and focus management and policy decisions on particular species in highly invasible ecosystems.  相似文献   

10.
Resident diversity and resource enrichment are both recognized as potentially important determinants of community invasibility, but the effects of these biotic and abiotic factors on invasions are often investigated separately, and little work has been done to directly compare their relative effects or to examine their potential interactions. Here, we evaluate the individual and interactive effects of resident diversity and resource enrichment on plant community resistance to invasion. We factorially manipulated plant diversity and the enrichment of belowground (soil nitrogen) and aboveground (light) resources in low-fertility grassland communities invaded by Lolium arundinaceum, the most abundant invasive grass in eastern North America. Soil nitrogen enrichment enhanced L. arundinaceum performance, but increased resident diversity dampened this effect of nitrogen enrichment. Increased light availability (via clipping of aboveground vegetation) had a negligible effect on community invasibility. These results demonstrate that a community’s susceptibility to invasion can be contingent upon the type of resource pulse and the diversity of resident species. In order to assess the generality of these results, future studies that test the effects of resident diversity and resource enrichment against a range of invasive species and in other environmental contexts (e.g., sites differing in soil fertility and light regimes) are needed. Such studies may help to resolve conflicting interpretations of the diversity–invasibility relationship and provide direction for management strategies.  相似文献   

11.
Biodiversity decline is a major concern for ecosystem functioning. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in both natural and artificial ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal species richness on soil invasion by non resident microbes. Synthetic fungal communities with a species diversity ranging from 1 to 8 were assembled in laboratory microcosms and used in three factorial experiments to assess the effect of diversity on soil fungistasis, microbial invasion of soil amended with plant litter and of plant rhizosphere. The capability of different microbes to colonize environments characterized by different resident microbial communities was measured. The number of microbial species in the microcosms positively affected soil fungistasis that was also induced more rapidly in presence of synthetic communities with more species. Moreover, the increase of resident fungal diversity dramatically reduced the invasibility of both soil and plant rhizosphere. We found lower variability of soil fungistasis and invasibility in microcosms with higher species richness of microbial communities. Our study pointed out the existence of negative relationships between fungal diversity and soil invasibility by non resident microbes. Therefore, the loss of microbial species may adversely affect ecosystem functionality under specific environmental conditions.  相似文献   

12.
Concern for biodiversity loss coupled with the accelerated rate of biological invasions has provoked much interest in assessing how native plant species diversity affects invasibility. Although experimental studies extensively document the effects of species richness on invader performance, the role of species evenness in such studies is rarely examined. Species evenness warrants more attention because the relative abundances of species can account for substantially more of the variance in plant community diversity and tend to change more rapidly and more frequently in response to disturbances than the absolute numbers of species. In this study, we experimentally manipulated species evenness within native prairie grassland mesocosms. We assessed how evenness affected primary productivity, light availability and the resistance of native communities to invasion. The primary productivity of native communities increased significantly with species evenness, and this increase in productivity was accompanied by significant decreases in light availability. However, evenness had no effect on native community resistance to invasion by three common exotic invasive species. In this study, niche complementarity provides a potential mechanism for the effects of evenness on productivity and light availability, but these effects apparently were not strong enough to alter the invasibility of the experimental communities. Our results suggest that species evenness enhances community productivity but provides no benefit to invasion resistance in otherwise functionally diverse communities.  相似文献   

13.
Understanding and predicting biological invasions can focus either on traits that favour species invasiveness or on features of the receiving communities, habitats or landscapes that promote their invasibility. Here, we address invasibility at the regional scale, testing whether some habitats and landscapes are more invasible than others by fitting models that relate alien plant species richness to various environmental predictors. We use a multi‐model information‐theoretic approach to assess invasibility by modelling spatial and ecological patterns of alien invasion in landscape mosaics, and by testing competing hypotheses of environmental factors that may control invasibility. Because invasibility may be mediated by particular characteristics of invasiveness, we classified alien species according to their C‐S‐R plant strategies. We illustrate this approach with a set of 86 alien species in northern Portugal. We first focus on predictors influencing species richness and expressing invasibility, and then evaluate whether distinct plant strategies respond to the same or different groups of environmental predictors. We confirmed climate as a primary determinant of alien invasions, and as a primary environmental gradient determining landscape invasibility. The effects of secondary gradients were detected only when the area was sub‐sampled according to predictions based on the primary gradient. Then, multiple predictor types influenced patterns of alien species richness, with some types (landscape composition, topography and fire regime) prevailing over others. Alien species richness responded most strongly to extreme land management regimes, suggesting that intermediate disturbance induces biotic resistance by favouring native species richness. Land‐use intensification facilitated alien invasion, whereas conservation areas hosted few invaders, highlighting the importance of ecosystem stability in preventing invasions. Plants with different strategies exhibited different responses to environmental gradients, particularly when the variations of the primary gradient were narrowed by sub‐sampling. Such differential responses of plant strategies suggest using distinct control and eradication approaches for different areas and alien plant groups.  相似文献   

14.
Aim  The invasion of natural communities by alien species represents a serious threat, but creates opportunities to learn about community functions. Neutral theory proposes that the niche concept may not be needed to explain the assemblage and diversity of natural communities, challenging the classical view of community ecology and generating a lasting debate. Biological invasions, when considered as natural experiments, can be used to contrast some of the predictions of neutral and classic niche theories.
Location  Global.
Methods  We use data from biological invasions as natural experiments to contrast some of the fundamental predictions of neutral theory.
Results  Some emerging patterns did not differ from neutral model expectations (e.g. the relationship between native and exotic species richness, invasibility of resource-rich habitats, and the relationship between propagule release and invasion success). Nevertheless, other patterns (e.g. experimental evidence of the relationship between diversity and susceptibility to invasion, the invasion of communities with a low resource availability, invasiveness related to species traits) contrasted with the predictions that can be inferred from neutral theory.
Main conclusions  Neutral theory correctly highlights the need to include randomness in models of community structure. Biological invasion patterns show that neutral forces are important in structuring natural communities, but the patterns differ from those inferred from a complete neutral model. For biodiversity-conservation purposes, the implications of accepting or not accepting neutral theory as a process-based theory are very important.  相似文献   

15.
Understanding the resistance of plant communities to invasion is urgent in times of changes in the physical environment due to climate change and changes in the resident communities due to biodiversity loss. Here, we test the interaction between repeated drought or heavy rainfall events and functional diversity of grassland and heath communities on invasibility, measured as the number of plant individuals invading from the matrix vegetation. Invasibility of experimental plant communities was influenced by extreme weather events, although no change in above‐ground productivity of the resident communities was observed. Drought decreased invasibility while heavy rainfall increased invasibility, a pattern that is consistent with the fluctuating resource hypothesis. Higher community diversity generally decreased invasibility, which can be explained by a combination of the fluctuating resource hypothesis and niche theory. The effects of the physical environment (extreme weather events) and diversity resistance (community composition) were additive, as they were independent from each other. Differences in the composition of invading species sets were found, and Indicator Species Analysis revealed several invading species with significant affinity to one particular extreme weather event or community composition. This finding supports niche theory and contradicts neutral species assembly. Our data supports theories which predict decreased resistance of plant communities due to both increased climate variability and biodiversity loss. The effects of these two factors, however, appear to be independent from each other.  相似文献   

16.
Mutualistic fungus promotes plant invasion into diverse communities   总被引:3,自引:0,他引:3  
Reducing the biological diversity of a community may decrease its resistance to invasion by exotic species. Manipulative experiments typically support this hypothesis but have focused mainly on one trophic level (i.e., primary producers). To date, we know little about how positive interactions among species may influence the relationship between diversity and invasibility, which suggests a need for research that addresses the question: under what conditions does diversity affect resistance to invasion? We used experimental manipulations of both plant diversity and the presence of an endophytic fungus to test whether a fungal mutualist of an invasive grass species (Lolium arundinaceum) switches the relationship between plant community diversity and resistance to invasion. Association with the fungal endophyte (Neotyphodium coenophialum) increased the ability of L. arundinaceum to invade communities with greater species diversity. In the absence of the endophyte, the initial diversity of the community significantly reduced the establishment of L. arundinaceum. However, establishment was independent of initial diversity in the presence of the endophyte. Fungal symbionts, like other key species, are often overlooked in studies of plant diversity, yet their presence may explain variation among studies in the effect of diversity on resistance to invasion.  相似文献   

17.
Biodiversity-ecosystem function experiments test how species diversity influences fundamental ecosystem processes. Historically, arthropod driven functions, such as herbivory and pest-control, have been thought to be influenced by direct and indirect associations among species. Although a number of studies have evaluated how plant diversity affects arthropod communities and arthropod-mediated ecosystem processes, it remains unclear whether diversity effects on arthropods are sufficiently consistent over time such that observed responses can be adequately predicted by classical hypotheses based on associational effects. By combining existing results from a long-term grassland biodiversity experiment (Jena Experiment) with new analyses, we evaluate the consistency of consumer responses within and across taxonomic, trophic, and trait-based (i.e. vertical stratification) groupings, and we consider which changes in arthropod community composition are associated with changes in consumer-mediated ecosystem functions.Overall, higher plant species richness supported more diverse and complex arthropod communities and this pattern was consistent across multiple years. Vegetation-associated arthropods responded more strongly to changes in plant species richness than ground-dwelling arthropods. Additionally, increases in plant species richness were associated with shifts in the species-abundance distributions for many, but not all taxa. For example, highly specialized consumers showed a decrease in dominance and an increase in the number of rare species with increasing plant species richness. Most ecosystem processes investigated responded to increases in plant species richness in the same way as the trophic group mediating the process, e.g. both herbivory and herbivore diversity increase with increasing plant species richness. In the Jena Experiment and other studies, inconsistencies between predictions based on classic hypotheses of associational effects and observed relationships between plant species richness and arthropod diversity likely reflect the influence of multi-trophic community dynamics and species functional trait distributions. Future research should focus on testing a broader array of mechanisms to unravel the biological processes underlying the biodiversity-ecosystem functioning relationships.  相似文献   

18.
齐相贞  林振山  温腾 《生态学报》2007,27(9):3835-3843
生物入侵带来的生态和经济危害引起了人们的广泛关注。在入侵生态学研究方面,生物多样性与生物入侵之间的关系长久以来成为群落可入侵性探讨的焦点。Elton经典假说认为,物种多样性越高对外来种入侵的抵抗能力越强,许多模型或野外试验都支持这一假说。但现在越来越多的试验对此提出了异议,各种假说纷纷出现。究竟生物多样性会不会影响外来种的入侵?假设两种不同的群落结构(功能群),设计6种外来种入侵土著群落的情景分析不同多样性及相同多样性下外来种的入侵状况。结果发现,在多样性相同的情况下,两种群落对外来种入侵的抵抗力不同。外来种成功入侵等比群落,却被倍数群落排斥在系统之外。进一步分析表明这主要是由于可利用资源的波动引起的,即Davis提出的"资源机遇假说"。在相同的物种多样性下,由于倍数群落的特殊结构,整个群落所占有资源远远大于等比群落资源比率。因此,外来种在等比群落中更易找到合适的入侵机会。而在物种多样性不同的情况下,由于物种多样性与已占有资源的变化是成正比的,因此,混淆了多样性与剩余资源可利用性对外来种入侵的影响。  相似文献   

19.
Exotic invasive species can directly and indirectly influence natural ecological communities. Cheatgrass (Bromus tectorum) is non-native to the western United States and has invaded large areas of the Great Basin. Changes to the structure and composition of plant communities invaded by cheatgrass likely have effects at higher trophic levels. As a keystone guild in North American deserts, granivorous small mammals drive and maintain plant diversity. Our objective was to assess potential effects of invasion by cheatgrass on small-mammal communities. We sampled small-mammal and plant communities at 70 sites (Great Basin, Utah). We assessed abundance and diversity of the small-mammal community, diversity of the plant community, and the percentage of cheatgrass cover and shrub species. Abundance and diversity of the small-mammal community decreased with increasing abundance of cheatgrass. Similarly, cover of cheatgrass remained a significant predictor of small-mammal abundance even after accounting for the loss of the shrub layer and plant diversity, suggesting that there are direct and indirect effects of cheatgrass. The change in the small-mammal communities associated with invasion of cheatgrass likely has effects through higher and lower trophic levels and has the potential to cause major changes in ecosystem structure and function.  相似文献   

20.
Exotic plant species can affect soil microbial communities with the potential for community and ecosystem feedbacks. Yet, separating the effects of exotics from confounded changes in plant community diversity still remains a challenge. We focused on how plant diversity and native or exotic life history affected root fungi because of their significant roles in community and ecosystem processes. Specifically, we examined how fungi colonizing plant roots were affected by plant richness (one, two or four species) replicated across a range of plant community mixtures (natives, exotics, native-exotic mixtures). Fungal biomass inside roots was affected independently by plant richness and mixture, while root fungal community composition was affected only by plant richness. Extraradical networks also increased in size with plant richness. By contrast, plant biomass was a function of plant mixture, with natives consistently smaller than exotics and native-exotic mixtures intermediate. Plant invasions may have an impact on the belowground community primarily through their effects on diversity, at least in the short-term. Disentangling the effects of diversity and invasion on belowground microbial communities can help us to understand both the controllers of belowground resilience and mechanisms of successful colonization and spread of exotic plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号