首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 914 毫秒
1.
Abstract Currently there is no single accepted hypothesis to explain gall‐forming insect species richness at a particular locality. Hygrothermal stress, soil nutrient availability, plant species richness, plant structural complexity, plant family or genus size, and host plant geographical range size have all been implicated in the determination of gall‐forming insect species richness. Previous studies of such richness at xeric sites have included predominantly scleromorphic vegetation, usually on nutrient‐poor soils. This study is the first to investigate gall‐forming insect species richness of xeric, non‐scleromorphic vegetation. Two habitat types were sampled at each of five localities across a rainfall gradient in the savanna biome of South Africa. The habitat types differed with respect to plant species composition and topography. Gall‐forming insect species richness did not increase with increasing hygrothermal stress or decreasing soil fertility. Rather, gall‐forming insect species richness was largely dependent on the presence of Terminalia sericea as well as other members of the Combretaceae and Mimosaceae. Plots where all these taxa were present had the highest gall‐forming insect species richness, up to 15 species, whereas plots with none of these taxa had a maximum of four galling‐insect species. Despite herb, shrub and tree strata not differing in gall‐forming insect species richness, insect galls were more common on woody than non‐woody plants. Also, stem galls were more frequent than apical or leaf galls. An alternative hypothesis to explain local gall‐forming insect species richness is suggested: galling insects may preferentially select those plant species with characteristics such as chemical toxicity, mechanical strength, degree of lignification or longevity that can be manipulated to benefit the galler. Thus plant community composition should be considered when attempting to explain gall‐forming insect species richness patterns.  相似文献   

2.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   

3.
1. Gall‐forming insects are a guild of endophages that exhibit a high level of fidelity to their host plants, however, their level of host specificity is seldom explicitly tested. 2. Gall‐forming insect taxa from 32 species of woody tropical plants with resolved phylogenetic relationships were collected and reared, representing 15 families from all the major clades of angiosperms, at three lowland rainforest locations in Madang, Papua New Guinea (PNG). 3. More than 8800 galled plant parts were collected from 78 gall morphospecies at an average of 2.4 per host plant. Total species richness at the sampling sites was estimated to be 83–89. All but one morphospecies were monophagous resulting in an effective specialisation of 0.98. 4. Specific leaf weight, foliar nitrogen, the presence of latex, and the successional preference of plant species all gave a phylogenetic signal, but only plant successional preference influenced the species richness of galls on analysis of phylogenetically independent contrasts. Gall species were distributed randomly among host plant species and showed no preference for any particular plant lineage. Furthermore, most gall‐forming taxa were evenly dispersed across the host plant phylogeny. 5. In the tropical rainforests of New Guinea, gall‐forming insects are ubiquitous but occur in species‐poor assemblages. Local species richness is closely tied to the diversity of angiosperms owing to very high host specificity. 6. Finally, galler species richness data from the literature across habitats and latitudes were compared and suggest that tropical rainforests may be richer in galls than previously acknowledged.  相似文献   

4.
We tested two hypotheses to explain changes in species richness ofgall-forming insects. The first hypothesis proposes that gall-forming insectspecies richness increases as more potential host–plant species areavailable. The second hypothesis implies that soil fertility affects plantcolonization by gall-forming insects. Seven sites, representing strongdifferences in vegetation and soil were chosen at the Lacandona tropical rainforest region, Chiapas, Mexico. Overall, we found 1522 individual plantsbelonging to 340 different plant species. From this, we found gall-forminginsects on 737 (43.9%) plants and on 74 (22%) of total plant species. We found asignificant negative correlation between gall-forming insect species richnessand species richness of plants, which does not support the hypothesis that plantspecies richness is an important factor in generating the radiation ofgall-forming insects. Using phosphorus as an indicator of soil fertility, wefound the lowest number of plants with gall-forming insects and the smallestgall-forming insect load per individual plant in the more fertile soil(alluvial). In contrast, the highest number of plants with galls and the highestgall-forming insect load per plant were found at a savanna-like vegetationsite, where the poorest soil was recorded. These results did not support thesoil fertility hypothesis in terms of species richness, but did with respect toabundance of plants with galls.  相似文献   

5.
Parasitoids play an important role in ecosystem functioning through their influence on herbivorous insect populations. Theoretical and experimental evidence suggest that increased species richness can enhance and stabilize ecosystem function. It is important to understand how richness‐driven functional relationships change across environmental gradients. We investigated how temperature affected the relationship between parasitoid richness and parasitism rate in a guild of gall‐parasitoids along an elevational gradient. We collected galls at 15 sites along five elevational gradients (between 762 m and 1145 m asl) on six occasions over a year. A total of 1902 insects, including 1593 parasitoids, were reared from 12 402 galls. Parasitism rate increased significantly with temperature on all sampling occasions, except December and February. We found a significant, positive richness–parasitism relationship. This relationship, however, was weaker at higher elevations which may be linked to decreased functional efficiency of parasitoids at lower temperatures. Temporal variability in parasitism rate and parasitoid richness were significantly related, regardless of temperature. A stable functional guild of this kind may provide a more reliable ecosystem service under environmental changes.  相似文献   

6.
Environmental factors act as drivers of species coexistence or competition. Mesic environments favor the action of parasites and predators on gall communities, while the factors that determine the structure of gall communities in xeric environments remain unknown. We evaluated the structure of gall communities along an environmental gradient defined by intrinsic plant characteristics, soil fertility, and aridity, and investigated the role of competition as a structuring force of gall communities in xeric environments. We created null models to compare observed and simulated patterns of co‐occurrence of galls and used the C‐score index to assess community aggregation or segregation. We used the NES C‐score (standardized C‐score) to compare patterns of co‐occurrence with parameters of environmental quality. Xeric environments had poorer and more arid soils and more sclerophyllous plants than mesic environments, which was reflected in the distribution patterns of gall communities. Values of the C‐score index revealed a segregated distribution of gall morphospecies in xeric environments, but a random distribution in mesic environments. The low availability of resources for oviposition and the high density of gallers in xeric environments reinforce interspecific competition as an important structuring force for gall communities in these environments.  相似文献   

7.
8.
1. The importance of host‐race formation to herbivorous insect diversity depends on the likelihood that successful populations can be established on a new plant host. A previously unexplored ecological aid to success on a novel host is better nutritional quality. The role of nutrition was examined in the shift of the stem‐boring beetle Mordellistena convicta to fly‐induced galls on goldenrod and the establishment there of a genetically distinct gall host race. 2. First, larvae of the host race inhabiting stems of Solidago gigantea were transplanted into stems and galls of greenhouse‐grown S. gigantea plants. At the end of larval development, the mean mass of larvae transplanted to galls was significantly greater than the mass of larvae transplanted to stems, indicating a likely nutritional benefit during the shift. This advantage was slightly but significantly diminished when the gall‐inducing fly feeding at the centre of the gall died early in the season. Additionally, there was a suggestion of a trade‐off in the increased mortality of smaller beetle larvae transplanted into galls. 3. In a companion experiment, S. gigantea gall‐race beetle larvae were likewise transplanted to S. gigantea stems and galls. Besides the expected greater mass in galls, the larvae also exhibited adaptations to the gall nutritional environment: larger inherent size, altered tunnelling behaviour, and no diminution of mass pursuant to gall‐inducer mortality. 4. In a third line of inquiry, chemical analyses of field‐collected S. gigantea plants revealed higher levels of mineral elements important to insect nutrition in galls as compared with stems.  相似文献   

9.
1. Hypersensitive reaction is an important type of induced defence by which the plant elicits a defence response to pathogens and insects. Hypersensitive reaction has been argued to be the most common plant resistance mechanism against insect herbivores that have intimate associations with their host plants. 2. The work reported here attempted to establish how important and widespread hypersensitive reaction might be against gall‐forming species across host taxa. 3. Hypersensitive reaction was the most important mortality factor against gall formation across host plant taxa in seven out of eight cases. 4. The number of insect galls correlated with the size of the leaves but module (leaf) size was a weak factor influencing the incidence of plant hypersensitive reaction to galling. 5. Insect galls and hypersensitive reactions occurred in genetically distant as well as geographically widespread host plant taxa.  相似文献   

10.
The Cape Floristic Region (CFR) is one of the most plant-species-rich regions in the world. It is also a warm temperate region and hypothetically should have high gall-insect species richness, making it interesting to investigate the relationship between the insects of the region and the rich flora. The relationship between gall-insect species richness (GSR) and plant richness was investigated for the Fynbos and for representatives of vegetation of the whole CFR. Samples (of up to 600 plants per transect for Fynbos) of woody shrubs were investigated for the presence of galls. The species richness of these insects was quantified, as well as plant species richness for each transect. GSR for Fynbos was compared to global figures for GSR. Fynbos harboured significantly more gall-insect species than other CFR vegetation types. GSR was positively correlated with CFR plant richness. GSR also closely tracked plant richness in Fynbos. GSR was not significantly influenced by other variables (elevation and aspect), suggesting that plant richness per se was an important factor in generating GSR. Fynbos GSR is comparable to other sclerophyllous regions of high GSR globally, corroborating that this vegetation type is conducive to gall-insect diversification. There is likely to be a high percentage of gall-insect endemism in the Fynbos, as might be expected from the high host fidelity of this insect group. Received: 22 September 1997 / Accepted: 16 February 1998  相似文献   

11.
The response of a host plant to gall‐inducing insects varies both among and within plants, so that different levels of resources are available to the insects. The weevil Collabismus clitellae Boheman induces galls on the shoots of Solanum lycocarpum St Hil. in south‐east Brazil. Galls are found on a range of parts within an individual plant and are more abundant on smaller plants. In the present study, the host plant response as a possible influence on the performance of C. clitellae both between and within plants was tested. Gall abortion increased with plant height. Within plants, gall size was positively related to shoot diameter and number of chambers within the gall. The increase in gall larval density (number of individuals per gall volume unit) resulted in smaller adults and reduced developmental rates, probably because of resource limitation within the gall. The number of eggs laid by females increased with shoot diameter. Females laid more eggs on thicker shoots, where there are fewer chances to form galls with high larval density. However, this relationship was weak and a large variation was found for adult sizes. The availability of high quality sites is limited to smaller plants and thicker shoots located on the basal region of the plant. The phenotypic plasticity of this insect species in adult size and development time allows individuals growing on low quality sites to reach maturity, thus enhancing exploitation of the host plant.  相似文献   

12.
Understanding factors that modulate plant development is still a challenging task in plant biology. Although research has highlighted the role of abiotic and biotic factors in determining final plant structure, we know little of how these factors combine to produce specific developmental patterns. Here, we studied patterns of cell and tissue organisation in galled and non‐galled organs of Baccharis reticularia, a Neotropical shrub that hosts over ten species of galling insects. We employed qualitative and quantitative approaches to understand patterns of growth and differentiation in its four most abundant gall morphotypes. We compared two leaf galls induced by sap‐sucking Hemiptera and stem galls induced by a Lepidopteran and a Dipteran, Cecidomyiidae. The hypotheses tested were: (i) the more complex the galls, the more distinct they are from their non‐galled host; (ii) galls induced on less plastic host organs, e.g. stems, develop under more morphogenetic constraints and, therefore, should be more similar among themselves than galls induced on more plastic organs. We also evaluated the plant sex preference of gall‐inducing insects for oviposition. Simple galls were qualitative and quantitatively more similar to non‐galled organs than complex galls, thereby supporting the first hypothesis. Unexpectedly, stem galls had more similarities between them than to their host organ, hence only partially supporting the second hypothesis. Similarity among stem galls may be caused by the restrictive pattern of host stems. The opposite trend was observed for host leaves, which generate either similar or distinct gall morphotypes due to their higher phenotypic plasticity. The Relative Distance of Plasticity Index for non‐galled stems and stem galls ranged from 0.02 to 0.42. Our results strongly suggest that both tissue plasticity and gall inducer identity interact to determine plant developmental patterns, and therefore, final gall structure.  相似文献   

13.
How plant‐feeding insects distribute themselves and utilize their host plant resources is still poorly understood. Several processes may be involved, and their relative roles may vary with the spatial scale considered. Herein, we investigate small‐scale patterns, namely how population density of a gall midge is affected by individual growth form, phenology, and microsite characteristics of its herb host. The long‐lived plant individuals vary much with regard to number of shoots, flower abundance, and flowering phenology. This variation is connected to site characteristics, primarily the degree of sun exposure. The monophagous insect galls the flowers of the host plant – an easily defined food resource. It is a poor disperser, but very long‐lived; diapausing larvae can stay in the soil for many years. Galls were censused on individual plants during 5 years; from a peak to a low in gall population density. Only a very small fraction of the flowers produced (<0.5%) were galled even in the peak year. Nevertheless, most plant individuals had galls at least 1 year. In a stepwise multiple regression, plant size (number of shoots) was found to be the most important predictor of gall density (galls/flower). However, gall density decreased more than one order of magnitude over the plant size range observed. There was also a weak effect of plant phenology. Early flowering plants had lower gall densities than those starting later. Sun exposure had no direct effect on gall density, but a path analysis revealed indirect effects via the timing of flowering. Gall population change was highly synchronous in different parts of the study area with no significant decrease in synchrony with distance.  相似文献   

14.
Biologists who study insect-induced plant galls are faced with the overwhelming diversity of plant forms and insect species. A challenge is to find common themes amidst this diversity. We discuss common themes that have emerged from our cytological and histochemical studies of diverse neotropical insect-induced galls. Gall initiation begins with recognition of reactive plant tissues by gall inducers, with subsequent feeding and/or oviposition triggering a cascade of events. Besides, to induce the gall structure insects have to synchronize their life cycle with plant host phenology. We predict that reactive oxygen species (ROS) play a role in gall induction, development and histochemical gradient formation. Controlled levels of ROS mediate the accumulation of (poly)phenols, and phytohormones (such as auxin) at gall sites, which contributes to the new cell developmental pathways and biochemical alterations that lead to gall formation. The classical idea of an insect-induced gall is a chamber lined with a nutritive tissue that is occupied by an insect that directly harvests nutrients from nutritive cells via its mouthparts, which function mechanically and/or as a delivery system for salivary secretions. By studying diverse gall-inducing insects we have discovered that insects with needle-like sucking mouthparts may also induce a nutritive tissue, whose nutrients are indirectly harvested as the gall-inducing insects feeds on adjacent vascular tissues. Activity of carbohydrate-related enzymes across diverse galls corroborates this hypothesis. Our research points to the importance of cytological and histochemical studies for elucidating mechanisms of induced susceptibility and induced resistance.  相似文献   

15.
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host‐plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host‐specific oviposition. 2. The present study investigated the role of host‐plant volatiles in host fidelity and oviposition preference of the gall‐boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y‐tube olfactometers. Previous studies suggest that the gall‐boring beetle is undergoing sequential host‐associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host‐plant stems. 4. These findings suggest that the gall‐boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host‐associated mating and oviposition likely play a role in the sequential radiation of the gall‐boring beetle.  相似文献   

16.
The diversity and abundance of gall‐inducing organisms are directly proportional to the structural complexity of the host plant. This hypothesis is controversial for forest environments, such as mangroves. Avicennia germinans (L.), a principal mangrove tree species found in the Neotropical region, is considered to be a superhost for gall‐inducing insects. Using a generalized linear mixed model (GLMM) based on the analysis of 1000 apical branches from 50 A. germinans trees, we examined the diversity and abundance of gall morphotypes (GM), together with the structural attributes of replanted 5‐ to 9‐year‐old mangroves, in the Amazon coast of Brazil. A total of 7602 galls were registered, averaging 1.3 ± 0.4 galls per leaf. Sixteen of the 22 morphotypes identified were found at all study sites. Two gall morphotypes (GM7 and GM4) were the most abundant, representing approximately 40 percent of the total. The structural complexity of the plant (mainly based on the number of leaves) directly affected the abundance and diversity of these organisms. While A. germinans is a superhost, this type of parasitism did not affect plant development or survival. The ample distribution of A. germinans, the formation of monospecific forests, and the high palatability of this plant make it an essential resource for the survival of the gall‐inducing guild in the mangroves of the Neotropics.  相似文献   

17.
1. How herbivore plant diversity relationships are shaped by the interplay of biotic and abiotic environmental variables is only partly understood. For instance, plant diversity is commonly assumed to determine abundance and richness of associated specialist herbivores. However, this relationship can be altered when environmental variables such as temperature covary with plant diversity. 2. Using gall‐inducing arthropods as focal organisms, biotic and abiotic environmental variables were tested for their relevance to specialist herbivores and their relationship to host plants. In particular, the hypothesis that abundance and richness of gall‐inducing arthropods increase with plant richness was addressed. Additionally, the study asked whether communities of gall‐inducing arthropods match the communities of their host plants. 3. Neither abundance nor species richness of gall‐inducing arthropods was correlated with plant richness or any other of the tested environmental variables. Instead, the number of gall species found per plant decreased with plant richness. This indicates that processes of associational resistance may explain the specialised plant herbivore relationship in our study. 4. Community composition of gall‐inducing arthropods matched host plant communities. In specialised plant herbivore relationships, the presence of obligate host plant species is a prerequisite for the occurrence of its herbivores. 5. It is concluded that the abiotic environment may only play an indirect role in shaping specialist herbivore communities. Instead, the occurrence of specialist herbivore communities might be best explained by plant species composition. Thus, plant species identity should be considered when aiming to understand the processes that shape diversity patterns of specialist herbivores.  相似文献   

18.
1. The megadiverse herbivores and their host plants are a major component of biodiversity, and their interactions have been hypothesised to drive the diversification of both. 2. If plant diversity influences the diversity of insects, there is an expectation that insect species richness will be strongly correlated with host‐plant species richness. This should be observable at two levels (i) more diverse host‐plant groups should harbour more species of insects, and (ii) the species richness of a group of insects should correlate with the richness of the host groups it uses. However, such a correlation is also consistent with a hypothesis of random host use, in which insects encounter and use hosts in proportion to the diversity of host plants. Neither of these expectations has been widely tested. 3. These expectations were tested using data from a species‐rich group of insects – the Coccidae (Hemiptera). 4. Significant positive correlations were found between the species richness of coccid clades (genera) and the species richness of the host‐plant family or families upon which the clades occur. On a global scale, more closely related plant families have more similar communities of coccid genera but the correlation is weak. 5. Random host use could not be rejected for many coccids but randomisation tests and similarity of coccid communities on closely related plant families show that there is non‐random host use in some taxa. Overall, our results support the idea that plant diversity is a driver of species richness of herbivorous insects, probably via escape‐and‐radiate or oscillation‐type processes.  相似文献   

19.
1. Oviposition preferences of herbivorous insects are predicted to match offspring performance on different host taxa or on conspecific host genotypes. In gall‐inducing insects, host‐plant properties such as growth rate and gall size, which are determined by plant genotype and growing conditions, may have a significant impact on offspring performance and, hence, should influence oviposition site selection. 2. The present study investigated host preference of the European rosette willow gall midge Rabdophaga rosaria (Loew) in relation to offspring success on seven clones of Salix myrsinifolia Salisb. and two naturally hybridised S. myrsinifolia × phylicifolia L. clones growing in a replicated design in an experimental field under two fertilisation regimes. For each clone, the average growth rate, number of shoot tips, and leaf and gall size were determined, and their effects on midge preference and larval survival were examined. 3. Main shoot height, number of shoot tips, and gall size were significantly affected by clone. The midges clearly preferred certain clones over the others, but preferences were not related to willow growth traits or to gall size. Survival probability was higher in large than in small galls, but females did not prefer large‐leaved clones that produced the biggest rosette galls. Midge oviposition was also uncorrelated with prior rates of leaf‐rust infection and with feeding preferences of voles and folivorous insects. 4. The weak preference–performance relationship of R. rosaria within S. myrsinifolia is probably explained by evolutionary constraints that prevent generalist insects from achieving an ability to discriminate among conspecific hosts of variable quality.  相似文献   

20.
Abstract This field study was designed to test whether the taxonomic group and geographic range size of a host plant species, usually found to influence insect species richness in other parts of the world, affected the number of gall species on Australian eucalypts. We assessed the local and regional species richness of gall-forming insects on five pairs of closely related eucalypt species. One pair belonged to the subgenus Corymbia, one to Monocalyptus, and three to different sections of Symphyomyrtus. Each eucalypt pair comprised a large and a small geographic range species. Species pairs were from coastal or inland regions of eastern Australia. The total number of gall species on eucalypt species with large geographic ranges was greater than on eucalypt species with small ranges, but only after the strong effect of eucalypt taxonomic grouping was taken into account. There was no relationship between the geographic range size of eucalypt species and the size of local assemblages of gall species, but the variation in insect species composition between local sites was higher on eucalypt species with large ranges than on those with small ranges. Thus the effect of host plant range size on insect species richness was due to greater differentiation between more widespread locations, rather than to greater local species richness. This study confirms the role of the geographic range size of a host plant in the determination of insect species richness and provides evidence for the importance of the taxon of a host plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号