首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Earth observing systems are now routinely used to infer leaf area index (LAI) given its significance in spatial aggregation of land surface fluxes. Whether LAI is an appropriate scaling parameter for daytime growing season energy budget, surface conductance (Gs), water‐ and light‐use efficiency and surface–atmosphere coupling of European boreal coniferous forests was explored using eddy‐covariance (EC) energy and CO2 fluxes. The observed scaling relations were then explained using a biophysical multilayer soil–vegetation–atmosphere transfer model as well as by a bulk Gs representation. The LAI variations significantly alter radiation regime, within‐canopy microclimate, sink/source distributions of CO2, H2O and heat, and forest floor fluxes. The contribution of forest floor to ecosystem‐scale energy exchange is shown to decrease asymptotically with increased LAI, as expected. Compared with other energy budget components, dry‐canopy evapotranspiration (ET) was reasonably ‘conservative’ over the studied LAI range 0.5–7.0 m2 m?2. Both ET and Gs experienced a minimum in the LAI range 1–2 m2 m?2 caused by opposing nonproportional response of stomatally controlled transpiration and ‘free’ forest floor evaporation to changes in canopy density. The young forests had strongest coupling with the atmosphere while stomatal control of energy partitioning was strongest in relatively sparse (LAI ~2 m2 m?2) pine stands growing on mineral soils. The data analysis and model results suggest that LAI may be an effective scaling parameter for net radiation and its partitioning but only in sparse stands (LAI <3 m2 m?2). This finding emphasizes the significance of stand‐replacing disturbances on the controls of surface energy exchange. In denser forests, any LAI dependency varies with physiological traits such as light‐saturated water‐use efficiency. The results suggest that incorporating species traits and site conditions are necessary when LAI is used in upscaling energy exchanges of boreal coniferous forests.  相似文献   

2.
Early succession aspen and late succession conifer forests have different architecture and physiology affecting hydrologic transfer processes. An evaluation of water pools and fluxes was used to determine differences in the hydrologic dynamics between stands of quaking aspen (Populus tremuloides) and associated stands of mixed conifer consisting of white fir (Abies concolor), Douglas-fir (Pseudotsuga menziesii), and Engelmann spruce (Picea engelmannii). In 2005 and 2006, measurements of snow water accumulation, snow ablation (melt), soil water content, snowpack sublimation, and evapotranspiration (ET) were measured in adjacent aspen and conifer stands. Peak snow water equivalent (SWE) averaged 34–44% higher in aspen in 2005 (average snow fall) and 2006 (above average snow fall), respectively, whereas snow ablation rates were greater in aspen stands (21 mm day−1) compared to conifer stands (11 mm day−1). When changes in soil water content (due to over-winter snowmelt) were combined with peak snow accumulation in 2006, aspen had greater potential (42–83%) water yield for runoff and groundwater recharge. Snowpack sublimation during the ablation period was not significantly different between meadow, aspen, and conifer sites and comprised less than 5% of the winter precipitation. Extended conifer transpiration in spring and fall did not contribute to large differences in water yield (<28 mm y−1). Summertime ET rates were higher in aspen plots (3.6 mm day−1) than in conifer plots (2.7 mm day−1), and differences in net ET largely reflected soil column porosity. This study shows that the largest differences in annual water yield between aspen and conifer stands result from differences in SWE and net summertime ET. Although SWE and accumulation of water in soil was greater in aspen, it was partly offset by greater net annual ET losses in aspen.  相似文献   

3.
Aims Combining field data analysis and modeling, this study investigates factors influencing the diurnal boundary layer (BL) development in boreal forest.Methods Field data analysis used both air sounding and surface flux measurements collected during the Boreal Ecosystem–Atmosphere Study field campaigns in central Canada. Model study applied a non-local transilient turbulence theory (TTT) to simulate the impact of the heterogeneous boundary conditions together with initial conditions on the BL development at the Candle Lake and Thompson release sites over boreal forests. Boundary conditions were characterized by the integrated surface flux measurements from different forest stands. The lake effect was included in constructing the surface fluxes at Candle Lake release site.Important findings Analyses of serial upper air sounding data and tower flux data indicate strong linear impacts of surface sensible heat forcing on the diurnal BL development above boreal forests. The regression slopes on the relationship between the BL development and the surface fluxes reflect the influences of initial boundary conditions to the BL developments. Both the modeled and the measured diurnal BLs show that lakes reduce sensible heat flux, leading to a shallower boundary in Candle Lake than in Thompson. Comparison of the model results and field measurements on the BL profiles indicates that the TTT model has the capability to simulate the BL development above boreal forests for sunny, rainfall or cloudy days. This study demonstrates the importance of lake on surface fluxes and BL development. The modeling effort shows the potential to couple the transilient theory with a land surface process model to study land surface and atmosphere interaction in boreal forest.  相似文献   

4.
Carbon exchange by the terrestrial biosphere is thought to have changed since pre-industrial times in response to increasing concentrations of atmospheric CO2 and variations (anomalies) in inter-annual air temperatures. However, the magnitude of this response, particularly that of various ecosystem types (biomes), is uncertain. Terrestrial carbon models can be used to estimate the direction and size of the terrestrial responses expected, providing that these models have a reasonable theoretical base. We formulated a general model of ecosystem carbon fluxes by linking a process-based canopy photosynthesis model to the Rothamsted soil carbon model for biomes that are not significantly affected by water limitation. The difference between net primary production (NPP) and heterotrophic soil respiration (Rh) represents net ecosystem production (NEP). The model includes (i) multiple compartments for carbon storage in vegetation and soil organic matter, (ii) the effects of seasonal changes in environmental parameters on annual NEP, and (iii) the effects of inter-annual temperature variations on annual NEP. Past, present and projected changes in atmospheric CO2 concentration and surface air temperature (at different latitudes) were analysed for their effects on annual NEP in tundra, boreal forest and humid tropical forest biomes. In all three biomes, annual NEP was predicted to increase with CO2 concentration but to decrease with warming. As CO2 concentrations and temperatures rise, the positive carbon gains through increased NPP are often outweighed by losses through increased Rh, particularly at high latitudes where global warming has been (and is expected to be) most severe. We calculated that, several times during the past 140 years, both the tundra and boreal forest biomes have switched between being carbon sources (annual NEP negative) and being carbon sinks (annual NEP positive). Most recently, significant warming at high latitudes during 1988 and 1990 caused the tundra and boreal forests to be net carbon sources. Humid tropical forests generally have been a carbon sink since 1960. These modelled responses of the various biomes are in agreement with other estimates from either field measurements or geochemical models. Under projected CO2 and temperature increases, the tundra and boreal forests will emit increasingly more carbon to the atmosphere while the humid tropical forest will continue to store carbon. Our analyses also indicate that the relative increase in the seasonal amplitude of the accumulated NEP within a year is about 0–14% year?1 for boreal forests and 0–23% year?1 in the tundra between 1960 and 1990.  相似文献   

5.
Carbon dioxide, water vapour, and sensible heat fluxes were measured above and within a spruce dominated forest near the southern ecotone of the boreal forest in Maine, USA. Summer, mid-day carbon dioxide uptake was higher than at other boreal coniferous forests, averaging about – 13 μmol CO2 m–2 s–1. Nocturnal summer ecosystem respiration averaged ≈ 6 μmol CO2 m–2 s–1 at a mean temperature of ≈ 15 °C. Significant ecosystem C uptake began with the thawing of the soil in early April and was abruptly reduced by the first autumn frost in early October. Half-hourly forest CO2 exchange was regulated mostly by the incident photosynthetically active photon flux density (PPFD). In addition to the threshold effects of freezing temperatures, there were seasonal effects on the inferred photosynthetic parameters of the forest canopy. The functional response of this forest to environmental variation was similar to that of other spruce forests. In contrast to reports of carbon loss from northerly boreal forest sites, in 1996 the Howland forest was a strong carbon sink, storing about 2.1 t C ha–1.  相似文献   

6.
玉米农田水热通量动态与能量闭合分析   总被引:16,自引:0,他引:16       下载免费PDF全文
 基于锦州农田生态系统野外观测站玉米农田涡度相关系统近2年的水热通量观测数据,分析了玉米农田水热通量的日际、年际变化特征及其能量 平衡状况。结果表明: 1)玉米农田水热通量日变化与年变化均呈单峰型二次曲线,峰值出现在12∶00~13∶00左右,与净辐 射的日变化、年 变化同步,潜热通量最大可达到655 w&#8226;m-2(出现在2004年7月8日1 3∶00),显热通量最大值大约为369 w&#8226;m-2(出现在2004年5月31日13∶ 00)。2)玉米农田水热通量强度与局地的环境条件密切相关:显热通量与大气压的年变化呈负相关,潜热通量与气温年变化呈正相关。水热通 量受降水的影响较大,对降水的反应较敏感。其中,潜热通量(LE)不仅与降水的强度有关,而且随着降水的季节分布的不同而出现不同的响应 ,即使同样量级的降水在夜间与白天对LE的影响也是不同的。3)玉米农田通量观测呈现能量不闭合现象,主要原因可能是未包含0~5 cm土壤 热储量与冠层热储量,造成大约15.5%的能量损失。  相似文献   

7.
Forest age, which is affected by stand‐replacing ecosystem disturbances (such as forest fires, harvesting, or insects), plays a distinguishing role in determining the distribution of carbon (C) pools and fluxes in different forested ecosystems. In this synthesis, net primary productivity (NPP), net ecosystem productivity (NEP), and five pools of C (living biomass, coarse woody debris, organic soil horizons, soil, and total ecosystem) are summarized by age class for tropical, temperate, and boreal forest biomes. Estimates of variability in NPP, NEP, and C pools are provided for each biome‐age class combination and the sources of variability are discussed. Aggregated biome‐level estimates of NPP and NEP were higher in intermediate‐aged forests (e.g., 30–120 years), while older forests (e.g., >120 years) were generally less productive. The mean NEP in the youngest forests (0–10 years) was negative (source to the atmosphere) in both boreal and temperate biomes (?0.1 and –1.9 Mg C ha?1 yr?1, respectively). Forest age is a highly significant source of variability in NEP at the biome scale; for example, mean temperate forest NEP was ?1.9, 4.5, 2.4, 1.9 and 1.7 Mg C ha?1 yr?1 across five age classes (0–10, 11–30, 31–70, 71–120, 121–200 years, respectively). In general, median NPP and NEP are strongly correlated (R2=0.83) across all biomes and age classes, with the exception of the youngest temperate forests. Using the information gained from calculating the summary statistics for NPP and NEP, we calculated heterotrophic soil respiration (Rh) for each age class in each biome. The mean Rh was high in the youngest temperate age class (9.7 Mg C ha?1 yr?1) and declined with age, implying that forest ecosystem respiration peaks when forests are young, not old. With notable exceptions, carbon pool sizes increased with age in all biomes, including soil C. Age trends in C cycling and storage are very apparent in all three biomes and it is clear that a better understanding of how forest age and disturbance history interact will greatly improve our fundamental knowledge of the terrestrial C cycle.  相似文献   

8.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   

9.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

10.
In the sporadic permafrost zone of North America, thaw‐induced boreal forest loss is leading to permafrost‐free wetland expansion. These land cover changes alter landscape‐scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco‐physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw‐induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present‐day boreal forest–wetland to a hypothetical homogeneous wetland landscape could induce a near‐surface cooling effect on regional air temperatures of up to 3–4 °C in late winter and 1–2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol?1. At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw‐induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends.  相似文献   

11.
北方森林土壤呼吸和木质残体分解释放出的CO2通量   总被引:13,自引:3,他引:10  
王传宽  杨金艳 《生态学报》2005,25(3):633-638
北方森林因其面积大、土壤碳储量高以及对全球暖化响应敏感而在全球碳平衡和气候系统中起着至关重要的作用。土壤呼吸和木质残体分解释放出的 CO2 通量是北方森林生态系统输入大气圈的最主要的碳源。量化这个通量并深刻理解其中的机理过程 ,是评价和预测北方森林在全球变化中的作用必不可少的内容。综述了北方森林生态系统土壤呼吸和木质残体分解释放出的 CO2 通量随生态系统类型及环境条件而变化的一般格局以及自养呼吸和异氧呼吸在土壤表面 CO2 通量中的相对贡献 ;分析了影响北方森林土壤呼吸的主要生物物理因子 ;讨论了该领域研究存在的问题和今后的研究方向 ;并强调木质残体分解释放出的 CO2 通量虽然在以往的森林生态系统碳平衡研究中常被忽略 ,但在火灾频繁的北方森林中不容忽视  相似文献   

12.
Pitacco  A.  Gallinaro  N.  Giulivo  C. 《Plant Ecology》1992,99(1):163-168
Actual evapotranspiration from a closed-canopy Quercus ilex L. stand has been estimated by applying the Bowen Ratio-Energy Budget method. Daily water loss was 3.5 mm day–1, with a peak rate near 0.6 mm hour–1. The phenomenon of thermal inversion, quite common in mediterranean climates, seemed to play a significant role in reducing evapotranspiration, by promoting dew formation and delaying the establishment of fluxes of latent and sensible heat away from the canopy. Dew, which may form over many hours in the night, appears to be a major sink of available energy in the early morning and may represent a useful water source for stressed foliage. The alternating processes of condensation and evaporation may have a beneficial effect on the closed stand micro-environment.  相似文献   

13.
Disturbances by fire and harvesting are thought to regulate the carbon balance of the Canadian boreal forest over scales of several decades. However, there are few direct measurements of carbon fluxes following disturbances to provide data needed to refine mathematical models. The eddy covariance technique was used with paired towers to measure fluxes simultaneously at disturbed and undisturbed sites over periods of about one week during the growing season in 1998 and 1999. Comparisons were conducted at three sites: a 1‐y‐old burned jackpine stand subjected to an intense crown fire at the International Crown Fire Modelling Experiment site near Fort Providence, North‐west Territories; a 1‐y‐old clearcut aspen area at the EMEND project near Peace River, Alberta; and a 10‐y‐old burned, mixed forest near Prince Albert National Park, Saskatchewan. Nearby mature forest stands of the same types were also measured as controls. The harvested site had lower net radiation (Rn), sensible (H) and latent (LE) heat fluxes, and greater ground heat fluxes (G) than the mature forest. Daytime CO2 fluxes were much reduced, but night‐time CO2 fluxes were identical to that of the mature aspen forest. It is hypothesized that the aspen roots remained alive following harvesting, and dominated soil respiration. The overall effect was that the harvested site was a carbon source of about 1.6 gC m?2 day?1, while the mature site was a sink of about ?3.8 gC m?2 day?1. The one‐year‐old burn had lower Rn, H and LE than the mature jackpine forest, and had a continuous CO2 efflux of about 0.8 gC m–2 day?1 compared to the mature forest sink of ? 0.5 g C m?2 day?1. The carbon source was likely caused by decomposition of fire‐killed vegetation. The 10‐y‐old burned site had similar H, LE, and G to the mature mixed forest site. Although the diurnal amplitude of the CO2 fluxes were slightly lower at the 10‐y‐old site, there was no significant difference between the daily integrals (? 1.3 gC m?2 day?1 at both sites). It appears that most of the change in carbon flux occurs within the first 10 years following disturbance, but more data are needed on other forest and disturbance types for the first 20 years following the disturbance event.  相似文献   

14.
We present the energy and mass balance of cerrado sensu stricto (a Brazilian form of savanna), in which a mixture of shrubs, trees and grasses forms a vegetation with a leaf area index of 1·0 in the wet season and 0·4 in the dry season. In the wet season the available energy was equally dissipated between sensible heat and evaporation, but in the dry season at high irradiance the sensible heat greatly exceeded evaporation. Ecosystem surface conductance gs in the wet season rose abruptly to 0·3 mol m?2 s?1 and fell gradually as the day progressed. Much of the total variation in gs was associated with variation in the leaf-to-air vapour pressure deficit of water and the solar irradiance. In the dry season the maximal gs values were only 0·1 mol m?2 s?1. Maximal net ecosystem fluxes of CO2 in the wet and dry season were –10 and –15 μmol CO2 m?2 s?1, respectively (sign convention: negative denotes fluxes from atmosphere to vegetation). The canopy was well coupled to the atmosphere, and there was rarely a significant build-up of respiratory CO2 during the night. For observations in the wet season, the vegetation was a carbon dioxide sink, of maximal strength 0·15 mol m?2 d?1. However, it was a source of carbon dioxide for a brief period at the height of the dry season. Leaf carbon isotopic composition showed all the grasses except for one species to be C4, and all the palms and woody plants to be C3. The CO2 coming from the soil had an isotopic composition that suggested 40% of it was of C4 origin.  相似文献   

15.
Net primary production (NPP) was measured in seven black spruce (Picea mariana (Mill.) BSP)‐dominated sites comprising a boreal forest chronosequence near Thompson, Man., Canada. The sites burned between 1998 and 1850, and each contained separate well‐ and poorly drained stands. All components of NPP were measured, most for 3 consecutive years. Total NPP was low (50–100 g C m?2 yr?1) immediately after fire, highest 12–20 years after fire (332 and 521 g C m?2 yr?1 in the dry and wet stands, respectively) but 50% lower than this in the oldest stands. Tree NPP was highest 37 years after fire but 16–39% lower in older stands, and was dominated by deciduous seedlings in the young stands and by black spruce trees (>85%) in the older stands. The chronosequence was unreplicated but these results were consistent with 14 secondary sites sampled across the landscape. Bryophytes comprised a large percentage of aboveground NPP in the poorly drained stands, while belowground NPP was 0–40% of total NPP. Interannual NPP variability was greater in the youngest stands, the poorly drained stands, and for understory and detritus production. Net ecosystem production (NEP), calculated using heterotrophic soil and woody debris respiration data from previous studies in this chronosequence, implied that the youngest stands were moderate C sources (roughly, 100 g C m?2 yr?1), the middle‐aged stands relatively strong sinks (100–300 g C m?2 yr?1), and the oldest stands about neutral with respect to the atmosphere. The ecosystem approach employed in this study provided realistic estimates of chronosequence NPP and NEP, demonstrated the profound impact of wildfire on forest–atmosphere C exchange, and emphasized the need to account for soil drainage, bryophyte production, and species succession when modeling boreal forest C fluxes.  相似文献   

16.
植被与大气间的显热和潜热通量的日变化是大气过程和植被生理过程的显著标志。本研究利用ChinaFLUX千烟洲站典型的夏季雨热不同季的季节性干旱的试验条件,探讨了2003年季节性干旱对该生态系统显热和潜热通量日变化变异幅度和峰值时间的影响。研究表明:显热通量的日变化变异幅度年平均值为176 W/m2。潜热通量的日变化变异幅度年平均值为171 W/m2。显热通量到达日变化峰值的时间平均为11:57。全年潜热通量的日变化都在午后达到峰值,平均值为12:33。季节性干旱造成显热通量的日变异幅度明显增大,从144W m-2增加到321 W m-2。而潜热通量的日变异幅度明显降低,从324 W/m2减小到198 W/m2。,显热和潜热通量日变异幅度的相对变化明显增大,从-165 W/m2增加到76 W/m2,气温和饱和水汽压差是影响显热和显热日变异幅度及其相对变化的主要控制因素。干旱胁迫期,深层水对显热通量日变化变异幅度及其与潜热通量日变化变异幅度的相对变化的作用更显著,而潜热通量日变化变异幅度与气象要素关系不显著。季节性干旱造成显热通量日变化的峰值时间和显热和潜热通量日变化峰值时间的相对变化明显向下午偏移,显热通量日变化的峰值从上午11:31到中午12:17,相对变化从1小时到1小时20分钟。季节性干旱对潜热通量日变化峰值时间没有显著的影响。非干旱胁迫期,显热通量日变化峰值时间和显热及潜热通量日变化峰值时间的相对变化均与气温负相关,而干旱胁迫期,则与气温正相关。潜热通量日变化峰值时间与气象要素关系均不显著。该生态系统显热和潜热通量日变化峰值的相对变化主要受降水量的季节分配控制,在干旱胁迫期降水的作用更加明显。潜热和显热通量日变化峰值时间的相对变化总体上都受植被与大气间的耦合程度控制。  相似文献   

17.
Soil microbial communities play an essential role in soil carbon (C) emission and C sequestration in forest ecosystems. However, little information is available regarding the relationship between soil C dynamics and microbial substrate utilization at large scales. Along the North–South Transect of Eastern China (NSTEC), seven forests representative of boreal, temperate and tropical biomes were examined. Soil heterotrophic respiration (Rh), soil dissolved organic C (DOC), microbial biomass C (MBC), and microbial community-level physiological profiles (CLPPs) were investigated using biochemical measurements, static chamber-gas chromatography analysis, and Biolog-Eco microplates, respectively. We found that soil Rh rates were significantly higher in subtropical and boreal forests than in temperate forests. Conversely, the concentrations of soil DOC and MBC, as well as microbial metabolic activity and functional diversity, were consistently higher in temperate forests than in subtropical forests. There were considerably different substrate utilization profiles among the boreal, temperate, and subtropical forests. Soil microorganisms from the temperate and boreal forests mainly metabolized high-energy substrates, while those from the subtropical forests used all substrates equally. In addition, soil Rh rates were significantly and negatively related to soil labile C concentrations, total metabolic activity, and the intensity of individual substrate utilization, indicating that soil microbes assimilated more soil substrates, thereby reducing CO2 emissions. Overall, our study suggests that climate factors, as well as substrate availability, dominate the activities and functions of soil microbes at large scales.  相似文献   

18.
Nutrient limitation is pervasive in the terrestrial biosphere, although the relationship between global carbon (C) nitrogen (N) and phosphorus (P) cycles remains uncertain. Using meta‐analysis we show that gross primary production (GPP) partitioning belowground is inversely related to soil‐available N : P, increasing with latitude from tropical to boreal forests. N‐use efficiency is highest in boreal forests, and P‐use efficiency in tropical forests. High C partitioning belowground in boreal forests reflects a 13‐fold greater C cost of N acquisition compared to the tropics. By contrast, the C cost of P acquisition varies only 2‐fold among biomes. This analysis suggests a new hypothesis that the primary limitation on productivity in forested ecosystems transitions from belowground resources at high latitudes to aboveground resources at low latitudes as C‐intensive root‐ and mycorrhizal‐mediated nutrient capture is progressively replaced by rapidly cycling, enzyme‐derived nutrient fluxes when temperatures approach the thermal optimum for biogeochemical transformations.  相似文献   

19.
To study how changing agricultural practices in the eastern Amazon affect carbon, heat and water exchanges, a 20 m tower was installed in a field in August 2000. Measurements include turbulent fluxes (momentum, heat, water vapor, and CO2) using the eddy covariance (EC) approach, soil heat flux, wind, and scalar profiles (T, q, and CO2), soil moisture content, terrestrial, total solar radiation, and photosynthetically active radiation (PAR, 400–700 nm). At the beginning of the measurements, in September 2000, the field was a pasture. On November 2001, the pasture was burned, plowed, and planted in upland (nonirrigated) rice. Calm nights were the norm in this site. Anomalously low values of net ecosystem exchange (NEE) were found using the EC method, even when the common criterion u*<0.2 m s?1 was used to identify and exclude poor performance nights. We observed more plausible values of NEE using criterion u*<0.08 m s?1, indicating that the criterion must be revised downward for flow over surfaces smoother than forests. However, even using the lower threshold, u* was lower than this limit for 82% of nights, and this led to nocturnal respiration underestimates. We compensate for this difficulty by estimating the respiration rate using the nocturnal boundary layer budget method. Land‐use change from pasture to rice cultivation strongly affected both diurnal rates of turbulent exchange but also the pattern of seasonal variation. Seasonal wet and dry season differences in vegetation state were clearly detected in the albedo and PAR‐albedo. These reflectivity changes were accompanied by modified net radiative flux, turbulent heat flux and evaporation rates. The highest evaporation rate was observed during the rice crop, when the field had total evaporation approximately half the precipitation input, less than that of the surrounding forest. Effects of the land‐cover changes were also detected in the carbon budget. For the pasture, the maximum CO2 uptake occurred in May, appreciably delayed from the start of the rainy season. After the field was plowed and the soil was exposed and there was efflux of CO2 to the atmosphere day and night for an extended period. Highest values of carbon uptake occurred during the rice plantation. Although the upland rice took up carbon at double the rate of the pasture that it replaced, the field was left fallow for much of the year, during the dry season.  相似文献   

20.
A new compilation of pollen and packrat midden data from western North America provides a refined reconstruction of the composition and distribution of biomes in western North America for today and for 6000 and 18,000 radiocarbon years before present (14C yr bp ). Modern biomes in western North America are adequately portrayed by pollen assemblages from lakes and bogs. Forest biomes in western North America share many taxa in their pollen spectra and it can be difficult to discriminate among these biomes. Plant macrofossils from packrat middens provide reliable identification of modern biomes from arid and semiarid regions, and this may also be true in similar environments in other parts of the world. However, a weighting factor for trees and shrubs must be used to reliably reconstruct modern biomes from plant macrofossils. A new biome, open conifer woodland, which includes eurythermic conifers and steppe plants, was defined to categorize much of the current and past vegetation of the semiarid interior of western North America. At 6000 14C yr bp , the forest biomes of the coastal Pacific North‐west and the desert biomes of the South‐west were in near‐modern positions. Biomes in the interior Pacific North‐west differed from those of today in that taiga prevailed in modern cool/cold mixed forests. Steppe was present in areas occupied today by open conifer woodland in the northern Great Basin, while in the central and southern Rocky Mountains forests grew where steppe grows today. During the mid‐Holocene, cool conifer forests were expanded in the Rocky Mountains (relative to today) but contracted in the Sierra Nevada. These differences from the forests of today imply different climatic histories in these two regions between 6000 14C yr bp and today. At 18,000 14C yr bp , deserts were absent from the South‐west and the coverage of open conifer woodland was greatly expanded relative to today. Steppe and tundra were present in much of the region now covered by forests in the Pacific North‐west.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号