共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Stormwater management ponds (SWMPs) are taking the place of natural ponds and wetlands in urban areas. SWMPs have the potential to serve as hotspots for nutrient cycling, yet little is known about how urban catchments affect nutrient chemistry and stoichiometry within these ponds. 2. We sampled 50 SWMPs in Southern Ontario, Canada, to characterise their seston stoichiometry and make comparisons with published lake and pond data and models of seston stoichiometry. We tested (i) whether C : N : P ratios were similar to natural ponds and small lakes, (ii) whether seston stoichiometry was scale dependent and (iii) whether variability in seston chemistry could be explained by landscape and pond characteristics, such as catchment imperviousness and hydrological condition (based on recently received rainfall). 3. Seston C : N and C : P ratios were significantly lower in SWMPs than published ratios for small lakes, likely because of high nitrogen and phosphorus concentrations in SWMPs. Our results also showed no dependency of stoichiometric ratios on pond size. Analyses of ratios versus landscape and pond characteristics revealed significant relationships only when ponds were grouped based on the hydrological condition of the catchments. 4. It is likely that SWMPs function very differently during wet and dry periods. When SWMPs are disconnected from the landscape after a lengthy dry period, internal processes become increasingly important for seston stoichiometry. 相似文献
2.
1. The light : nutrient hypothesis (LNH) proposes that herbivore growth rates are maximised at intermediate light‐to‐nutrient ratios. A reduction to light intensity (i.e. decreased light‐to‐nutrient ratio) should lead to reduced food availability for herbivores while excessive light intensity in oligotrophic environments (i.e. increased light‐to‐nutrient ratios) should increase the C : N and C : P ratios of producers. However, this hypothesis has not yet been supported by studies on stream ecosystems. 2. We tested the LNH by experimental application of controlled natural gradients in light intensity to oligotrophic laboratory channels that included periphyton and the freshwater snail Gyraulus chinensis. 3. The results in this oligotrophic environment indicate that light regulated the flow of matter between trophic levels and grazer reproduction by controlling C : P ratios of the producers. 相似文献
3.
SHARI E. FANTA WALTER R. HILL TIMOTHY B. SMITH BRIAN J. ROBERTS 《Freshwater Biology》2010,55(5):931-940
1. The light : nutrient hypothesis (LNH) states that algal nutrient content is determined by the balance of light and dissolved nutrients available to algae during growth. Light and phosphorus gradients in both laboratory and natural streams were used to examine the relevance of the LNH to stream periphyton. Controlled gradients of light (12–426 μmol photons m?2 s?1) and dissolved reactive phosphorus (DRP, 3–344 μg L?1) were applied experimentally to large flow‐through laboratory streams, and natural variability in canopy cover and discharge from a wastewater treatment facility created gradients of light (0.4–35 mol photons m?2 day?1) and DRP (10–1766 μg L?1) in a natural stream. 2. Periphyton phosphorus content was strongly influenced by the light and DRP gradients, ranging from 1.8 to 10.7 μg mg AFDM?1 in the laboratory streams and from 2.3 to 36.9 μg mg AFDM?1 in the natural stream. Phosphorus content decreased with increasing light and increased with increasing water column phosphorus. The simultaneous effects of light and phosphorus were consistent with the LNH that the balance between light and nutrients determines algal nutrient content. 3. In experiments in the laboratory streams, periphyton phosphorus increased hyperbolically with increasing DRP. Uptake then began levelling off around 50 μg L?1. 4. The relationship between periphyton phosphorus and the light : phosphorus ratio was highly nonlinear in both the laboratory and natural streams, with phosphorus content declining sharply with initial increases in the light : phosphorus ratio, then leveling off at higher values of the ratio. 5. Although light and DRP both affected periphyton phosphorus content, the effects of DRP were much stronger than those of light in both the laboratory and natural streams. DRP explained substantially more of the overall variability in periphyton phosphorus than did light, and light effects were evident only at lower phosphorus concentrations (≤25 μg L?1) in the laboratory streams. These results suggest that light has a significant negative effect on the food quality of grazers in streams only under a limited set of conditions. 相似文献
4.
MARCEL G. A.
Van Der HEIJDEN SEBASTIAAN VERKADE SUSANNE J.
De BRUIN 《Global Change Biology》2008,14(11):2626-2635
Nitrogen (N) inputs to ecosystems have increased worldwide, often leading to large changes in plant community structure and reducing plant diversity. Yet, the interaction of increased N availability with other factors that determine plant community composition, are still poorly understood. Here, we test whether the impact of N addition on plant communities depends on the presence of arbuscular mycorrhizal fungi (AMF). AMF are widespread plant symbionts that facilitate growth of many plant species. We hypothesize that AM fungi reduce the negative impact of N addition on plant communities by supporting growth of species that are sensitive to N enrichment.We established experimental grassland microcosms consisting of 18 plant species. These microcosms were subjected to high and low N supply and were inoculated with AMF or remained nonmycorrhizal. Both N addition and AMF had a big impact on plant community composition, but with opposite effects. N addition induced a 2.8‐fold increase in grass biomass and reduced legume biomass. Grasses dominated the microcosms at high N supply, especially when AMF were absent. In contrast, AMF enhanced biomass of all legumes species (on average 6.8‐fold) and reduced the relative abundance of grasses. The proportion of legume biomass out of total shoot biomass at high N supply was 19% with AMF and only 3% without AMF. Our results show that responses of plant communities to N enrichment depend on AMF and that AMF can reduce the negative impact of increased N availability on plant community structure by reducing grass dominance. 相似文献
5.
为揭示黄土高原子午岭林区不同演替阶段和植被类型主要树种养分再吸收特征,研究选取4种次生植被树种(白桦、山杨、辽东栎和油松)和2种人工植被树种(刺槐和侧柏),测定其成熟叶、凋落叶和林下土壤碳(C)、氮(N)、磷(P)含量,研究了叶片N、P再吸收率及其与养分指标的关系。结果表明:(1)不同树种叶片养分和林下土壤养分含量存在显著差异,土壤C、N含量和C∶N∶P计量比均表现为演替后期林地(辽东栎和油松)>演替前期林地(山杨和白桦)>人工林(侧柏和刺槐);(2)不同树种叶片N、P再吸收率分别为17.18%—43.34%和27.13%—58.12%,均表现为演替后期林地>人工林>演替前期林地,且P的再吸收率总体高于N的再吸收率;(3)不同树种叶片N、P再吸收率与叶片养分指标的关系强于土壤,与养分计量比的相关性大于养分含量的相关性。说明子午岭典型植被会通过叶片N、P再吸收来适应养分限制环境,尤其是演替后期植被再吸收能力更强,研究可为黄土高原植被恢复提供理论依据。 相似文献
6.
Eleni Koufali Olga K. Voulgari reas P. Mamolos Effrosyni D. Karanika Demetrios S. Veresoglou 《Journal of Plant Ecology》2016,9(6):784
Aims Nitrogen (N) and phosphorus (P) constitute essential elements for plant growth and their availability influence species diversity in herbaceous plant communities. Legumes exhibit relatively high abundance in N-limited soils. Moreover, the legumes' N:P ratios are much higher than those of the other plant species grown in the same site, probably because they are able to fix atmospheric N 2. The objective of this study was to determine how the relative proportion in N and P availability and the restriction of legumes to fix atmospheric N 2 affect: (i) the primary productivity of plant species, (ii) species composition and (iii) N and P concentrations of species.Methods In an outdoor experiment, mixtures containing grasses, legumes and non-legume forbs were established in 32 containers under four soil treatments (control, N addition, P addition and disinfected soil), in a completely randomized design with eight replicates. Plant growth was examined when N and P were limited in the control soil:sand mixture, in a pot experiment sown with Plantago lanceolata .Important findings The pot experiment indicated that both N and P were limiting for the growth of P. lanceolata. Soil treatments affected primary productivity and species composition. Legumes had a relatively high abundance in the control and their growth was favoured, especially that of Medicago sativa, by P addition. Grasses' growth was increased by the addition of N. Inhibition of rhizobia resulted in poor growth of legumes and concomitant higher growth of grasses, in comparison to the control. The N:P ratios of non-legume species differed between treatments and were always higher in the legume species, even in the disinfected soil. The latter provides evidence that the high N concentrations found in legumes are a physiological characteristic of this specific group of plants. 相似文献
7.
Cecilia A. Pérez Juan C. Aravena Wladimir A. Silva Juan M. Enríquez José M. Fariña Juan J. Armesto 《Austral ecology》2014,39(3):288-303
Glacier foreland moraines provide an ideal model to examine the patterns of ecosystem development and the evolution of nitrogen and phosphorous limitation over successional time. In this paper, we focus on a 400‐year soil chronosequence in the glacier forelands of Santa Inés Island in the Magellan Strait, southern Chile by examining forest development on phosphorus (P)‐poor substrates in a uniquely unpolluted region of the world. Results show a steady increase in tree basal area and a humped trend in tree species richness over four centuries of stand development. The increase in basal area suggests that the late successional tree species were more efficient nutrient users than earlier successional ones. Total contents of carbon (C) and nitrogen (N) in soils increased during the chronosequence, reaching an asymptote in late succession. The net increases in soil C : N, C : P and N : P ratios observed over successional time suggest that nutrient limitation is maximal in 400‐year‐old substrates. Foliar C : N and C : P ratios also increased over time to reach an asymptote in old‐growth stages, following soil stoichiometric relationships; however the foliar N‐to‐P ratio remained constant throughout the chronosequence. Biological N fixation was greater in early postglacial succession, associated with the presence of the symbiotic N‐fixer Gunnera magellanica. Declining trends of δ15N in surface soils through the 400‐year chronosequence are evidence of decreasing N losses in old‐growth forests. In synthesis, glacier foreland chronosequences at this high South American latitude provide evidence for increasing efficiency of N and P use in the ecosystem, with the replacement of shade‐intolerant pioneers by more efficient, shade‐tolerant tree species. This pattern of ecosystem development produces a constant foliar N : P ratio, regardless of variation in soil N‐to‐P ratio over four centuries. 相似文献
8.
Manuel Villar-Argaiz Juan M. Medina-Sánchez Luis Cruz-Pizarro & Presentación Carrillo 《Freshwater Biology》2001,46(8):1017-1034
1. The inter‐ and intra‐annual changes in the biomass, elemental (carbon (C), nitrogen (N) and phosphorus (P)) and taxonomical composition of the phytoplankton in a high mountain lake in Spain were studied during 3 years with different physical (fluctuating hydrological regime) and chemical conditions. The importance of internal and external sources of P to the phytoplankton was estimated as the amount of P supplied via zooplankton recycling (internal) or through ice‐melting and atmospheric deposition (external). 2. Inter‐annual differences in phytoplankton biomass were associated with temperature and total dissolved phosphorus. In 1995, phytoplankton biomass was positively correlated with total dissolved phosphorus. In contrast, the negative relationship between zooplankton and seston biomass (direct predatory effects) and the positive relationship between zooplankton P excretion and phytoplankton biomass in 1997 (indirect P‐recycling effects), reinforces the primary role of zooplankton in regulating the total biomass of phytoplankton but, at the same time, encouraging its growth via P‐recycling. 3. Year‐to‐year variations in seston C : P and N : P ratios exceeded intra‐annual variations. The C : P and N : P ratios were high in 1995, indicating strong P limitation. In contrast, in 1996 and 1997, these ratios were low during ice‐out (C : P < 100 and N : P < 10) and increased markedly as the season progressed. Atmospheric P load to the lake was responsible for the decline in C : P and N : P ratios. 4. Intra‐annual variations in zooplankton stoichiometry were more pronounced than the overall differences between 1995 and 1996. Thus, the zooplankton N : P ratio ranged from 6.9 to 40.1 (mean 21.4) in 1995, and from 10.4 to 42.2 (mean 24.9) in 1996. The zooplankton N : P ratio tended to be low after ice‐out, when the zooplankton community was dominated by copepod nauplii, and high towards mid‐ and late‐season, when these were replaced by copepodites and adults. 5. In 1995, the minimum demands for P of phytoplankton were satisfied by ice‐melting, atmospheric loading and zooplankton recycling over 100%. In order of importance, atmospheric inputs (> 1000%), zooplankton recycling (9–542%), and ice‐melting processes (0.37–5.16%) satisfied the minimum demand for P of phytoplankton during 1996 and 1997. Although the effect of external forces was rather sporadic and unpredictable in comparison with biologically driven recycle processes, both may affect phytoplankton structure and elemental composition. 6. We identified three conceptual models representing the seasonal phosphorus flux among the major compartments of the pelagic zone. While ice‐melting processes dominated the nutrient flow at the thaw, biologically driven processes such as zooplankton recycling became relevant as the season and zooplankton ontogeny progressed. The stochastic nature of P inputs associated with atmospheric events can promote rapid transitional changes between a community limited by internal recycling and one regulated by external load. 7. The elemental composition of the zooplankton explains changes in phytoplankton taxonomic and elemental composition. The elemental negative balance (seston N : P < zooplankton N : P, low N : P recycled) during the thaw, would promote a community dominated by species with a high demand for P (Cryptophyceae). The shift to an elemental positive balance (seston N : P > zooplankton N : P, high N : P recycled) in mid‐season would skew the N : P ratio of the recycled nutrients, favouring dominance by chrysophytes. The return to negative balance, as a consequence of the ontogenetic increase in zooplankton N : P ratio and the external P inputs towards the end of the ice‐free season, could alleviate the limitation of P and account for the appearance of other phytoplankton classes (Chlorophyceae or Dinophyceae). 相似文献
9.
以浙江天童常绿阔叶林、常绿针叶林和落叶阔叶林为对象, 通过对叶片和凋落物C:N:P比率与N、P重吸收的研究, 揭示3种植被类型N、P养分限制和N、P重吸收的内在联系。结果显示: 1)叶片C:N:P在常绿阔叶林为758:18:1, 在常绿针叶林为678:14:1, 在落叶阔叶林为338:11:1; 凋落物C:N:P在常绿阔叶林为777:13:1, 常绿针叶林为691:14:1, 落叶阔叶林为567:14:1; 2)常绿阔叶林和常绿针叶林叶片与凋落物C:N均显著高于落叶阔叶林; 叶片C:P在常绿阔叶林最高, 常绿针叶林中等, 落叶阔叶林最低, 常绿阔叶林和常绿针叶林凋落物C:P显著高于落叶阔叶林; 叶片N:P比也是常绿阔叶林最高、常绿针叶林次之, 落叶阔叶林最低, 但常绿阔叶林凋落物N:P最低; 3)植被叶片N、P含量间(N为x, P为y)的II类线性回归斜率显著大于1 (p < 0.05), 表明叶片P含量的增加可显著提高叶片N含量; 凋落物N、P含量的回归斜率约等于1, 反映了凋落物中单位P含量与单位N含量间的等速损耗关系; 4)常绿阔叶林N重吸收率显著高于常绿针叶林与落叶阔叶林, 落叶阔叶林P重吸收率显著高于常绿阔叶林和常绿针叶林。虽然植被的N:P指示常绿阔叶林受P限制, 落叶阔叶林受N限制, 常绿针叶林受N、P的共同限制, 但是N、P重吸收研究结果表明: 受N素限制的常绿阔叶林具有高的N重吸收率, 受P限制的落叶阔叶林并不具有高的P重吸收率。可见, 较高的N、P养分转移率可能不是植物对N、P养分胁迫的一种重要适应机制, 是物种固有的特征。 相似文献
10.
《植物生态学报》2016,40(2):165
Aims The increase in atmospheric N deposition has accelerated N cycling of ecosystems, thus altering the structure and function of ecosystems, especially in those limited by N availability. Studies on the response of plant growth to artificial N addition could provide basic data for a better understanding of how the structure of grasslands in northern China responds to increasing N deposition. Methods We investigated the seasonal dynamics of plant growth of four species after 2-year multi-level N addition in a field experiment conducted in a desert steppe of Ningxia in 2011. Plant biomass and the relative growth rate (RGR) of the studied species were measured and their relationships with C:N:P ratios of plants (community and leaf levels) and soils were analyzed. Important findings Results in 2012 showed that 2-year N addition promoted the growth of the four species and the effects were different among growth forms and were species-specific. In general, the plant biomass of the studied species was significantly correlated with leaf N concentration, leaf N:P ratio, community N pool, soil total N content and soil N:P ratio, while only weak relationships were observed between plant biomass and C:N and C:P ratios of plants and soils. In contrast, there was a significant linear relationship between RGR and N:P ratios both of plants and soils.Our results suggest that short-term N addition promoted the accumulation of plant biomass, and the species-specific responses to stimulated N addition can directly affect the structure of the desert steppe ecosystem. Plant N:P ratio and soil N:P ratio could indicate nutrient limitation of plant growth to a certain extent: N addition increased soil N content and N:P ratio, and thus relieved N limitation gradually. Once more N is available to plants, the growth of plants and the accumulation of community N was stimulated in turn. 相似文献
11.
Jordi Sardans Mireia Bartrons Olga Margalef Albert Gargallo‐Garriga Ivan A. Janssens Phillipe Ciais Michael Obersteiner Bjarni D. Sigurdsson Han Y. H. Chen Josep Peñuelas 《Global Change Biology》2017,23(3):1282-1291
Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant–soil nutrient concentrations. We conducted a meta‐analysis of 215 peer‐reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient‐poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant–soil elemental composition and stoichiometry. 相似文献
12.
Does conversion of forest to agricultural land change soil carbon and nitrogen? a review of the literature 总被引:1,自引:0,他引:1
Danuse Murty Miko U. F. Kirschbaum Ross E. Mcmurtrie Heather Mcgilvray 《Global Change Biology》2002,8(2):105-123
Soil carbon is a large component of the global carbon cycle and its management can significantly affect the atmospheric CO2 concentration. An important management issue is the extent of soil carbon (C) release when forest is converted to agricultural land. We reviewed the literature to assess changes in soil C upon conversion of forests to agricultural land. Analyses are confounded by changes in soil bulk density upon land‐use change, with agricultural soils on average having 13% higher bulk density. Consistent with earlier reviews, we found that conversion of forest to cultivated land led to an average loss of approximately 30% of soil C. When we restricted our analysis to studies that had used appropriate corrections for changes in bulk density, soil C loss was 22%. When, from all the studies compiled, we considered only studies reporting both soil C and nitrogen (N), average losses of C and N were 24% and 15%, respectively, hence showing a decrease in the average C : N ratio. The magnitude of these changes in the C : N ratio did not correlate with either C or N changes. When considering the transition from forest to pasture, there was no significant change in either soil C or N, even though reported changes in soil C ranged from ?50% to +160%. Among studies that reported changes in soil N as well as soil C, C : N ratios both increased and decreased, with trends depending on changes in system N. Systems with increasing soil N generally had decreased C : N ratios, whereas systems with decreasing soil N had increased C : N ratios. Our survey confirmed earlier findings that conversion of forest to cropland generally leads to a loss of soil carbon, although the magnitude of change might have been inflated in many studies by the confounding influence of bulk‐density changes. In contrast, conversion of forest to uncultivated grazing land did not, on average, lead to loss of soil carbon, although individual sites may lose or gain soil C, depending on specific circumstances, such as application of fertiliser or retention or removal of plant residues. 相似文献
13.
大气氮(N)沉降增加加速了生态系统N循环, 从而会对生态系统的结构和功能产生巨大的影响, 尤其是一些受N限制的生态系统.研究N添加对荒漠草原植物生长的影响, 可为深入理解N沉降增加对我国北方草原群落结构的影响提供基础数据.该文基于2011年在宁夏荒漠草原设置的N沉降增加的野外模拟试验, 研究了两年N添加下4个常见物种(牛枝子(Lespedeza potaninii),老瓜头(Cynanchum komarovii),针茅(Stipa capillata)和冰草(Agropyron cristatum))不同时期种群生物量和6-8月份相对生长速率的变化特征.并通过分析物种生长与植物(群落和叶片水平)和土壤碳(C),N,磷(P)生态化学计量学特征的关系, 探讨C:N:P化学计量比对植物生长养分限制的指示作用.结果显示N添加促进了4个物种的生长, 但具有明显的种间差异性, 且这种差异也存在于相同生活型的不同物种间.总体而言, 4个物种种群生物量与叶片N浓度,叶片N:P,群落N库,土壤全N含量和土壤N:P存在明显的线性关系, 与植物和土壤C:N和C:P的相关关系相对较弱.几个物种相对生长速率与植物和土壤N:P也呈现一定程度的正相关关系, 但与其他指标相关性较弱.以上结果表明, 短期N沉降增加提高了植物的相对生长速率, 促进了植物生长, 且更有利于针茅和老瓜头的生物量积累, 从而可能会逐渐改变荒漠草原群落结构.植物N:P和土壤N:P对荒漠草原物种生长具有较强的指示作用: 随着土壤N受限性逐渐缓解, 土壤N含量和N:P相继升高, 可供植物摄取的N增多, 因而有利于植物生长和群落N库积累. 相似文献
14.
Aims Recent theories indicate that N is more in demand for plant growth than P; therefore, N concentration and N : C and N : P ratios are predicted to be positively correlated with relative growth rate (RGR) in plants under nutrient-enriched conditions. This prediction was tested in this study.Methods We examined the whole-plant concentrations of C, N and P and RGR, as well as the relationship between RGR and the concentrations and the ratios of N : C, P : C and N : P, for different harvest stages (the days after seed germination) of the seedlings of seven shrub species and four herbaceous species grown in N and P non-limiting conditions. The relationships among plant size, nutrient concentrations and ratios were subsequently determined.Important findings RGR was positively correlated with N concentration and the ratios of N : P and N : C when the data were pooled for all species and for each shrub species, but not for individual herbaceous species. However, the relationship between RGR and P concentration and P : C was not significantly correlated for either shrubs or herbs. The variation of N among harvest stages and species was much greater than that of P, and the variation in N : P ratio was determined primarily by changes in N concentration. The shrub species differed from the herbaceous species in their N and P concentrations, nutrient ratios and in intraspecific relationships between RGR and nutrient ratios. These differences possibly reflect differences in the capacity for P storage and biomass allocation patterns. In general, our data support recent theoretical predictions regarding the relationship between RGR and C : N : P stoichiometry, but they also show that species with different life forms differ in the relationships among RGR and C : N : P stoichimetries. 相似文献
15.
Nicolas Fanin Nathalie Fromin Bruno Buatois Stephan Httenschwiler 《Ecology letters》2013,16(6):764-772
Stoichiometric homeostasis of heterotrophs is a common, but not always well‐examined premise in ecological stoichiometry. We experimentally evaluated the relationship between substrate (plant litter) and consumer (microorganisms) stoichiometry for a tropical terrestrial decomposer system. Variation in microbial C : P and N : P ratios tracked that of the soluble litter fraction, but not that of bulk leaf litter material. Microbial N and P were not isometrically related, suggesting higher rates of P than N sequestration in microbial biomass. Shifts in microbial stoichiometry were related to changes in microbial community structure. Our results indicate that P in dissolved form is a major driver of terrestrial microbial stoichiometry, similar to aquatic environments. The demonstrated relative plasticity in microbial C : P and N : P and the critical role of P have important implications for theoretical modelling and contribute to a process‐based understanding of stoichiometric relationships and the flow of elements across trophic levels in decomposer systems. 相似文献
16.
Nitrogen (N) and phosphorus (P) resorption from senescing leaves were studied, and the contribution of N and P cycling through litterfall to soil nutrient patchiness was investigated for four Acacia species in the Great Sandy Desert in north-western Australia. N and P concentrations of mature and recently shed leaves were analysed and compared; soils under the canopies of the shrubs and soils in gaps (open areas) between the shrubs were also analysed and compared for N and P concentrations. Mature leaf P concentrations of the plants were considerably lower than the global average values, and N : P ratios of mature leaves were high. Plants derived 0-75% of their leaf N from symbiotic N(2)-fixation. N-resorption efficiency was between 0 and 43%, and P-resorption efficiency was between 32 and 79%; all plants were more efficient at P resorption than at N resorption, and litter N : P ratios were significantly higher than mature leaf N : P ratios. Soils of the study sites were P-impoverished. Total soil N and P concentrations were higher under the canopy than in gaps, but bicarbonate-extractable P concentration was higher in gaps. Nutrient cycling through litterfall results in soil nutrient patchiness and forms 'islands of fertility' under the canopies of the shrubs. 相似文献
17.
Sabine Güsewell 《The New phytologist》2004,164(2):243-266
18.
选择南亚热带森林演替过程3个阶段(初期、中期和后期)的典型森林生态系统为研究对象, 在测定植物与土壤中全N、全P含量的基础上, 阐明了森林演替过程中植物与土壤的N、P化学计量特征。结果显示: 1)土壤中全N含量随演替进行而增加, 马尾松(Pinus massoniana)林(初期)、混交林(中期)和季风林(后期) 0-10 cm土层中全N含量分别为0.440、0.843和1.023 g·kg-1; 混交林0-10 cm土层中全P的含量最为丰富, 为0.337 g·kg-1, 马尾松林和季风林土壤全P含量分别为0.190和0.283 g·kg-1。2)植物叶片中全N、全P的含量随演替呈减少的趋势, 但根系中全N、全P的含量都以马尾松林为最多, 混交林和季风林含量彼此相当。3)各土层中N:P随演替的进行呈现明显增加趋势, 马尾松林、混交林和季风林0-10 cm土层中N:P分别为2.3、2.5和3.6; 植物各器官中N:P随演替的进行也呈增加趋势, 且叶片和根系中的N:P相近, 马尾松林、混交林和季风林叶片中N:P分别为22.7、25.3和29.6。基于上述结果, 探讨了南亚热带森林生态系统植物与土壤中N:P特征、森林演替过程中植物与土壤中N:P变化规律以及P对南亚热带森林生态系统的限制作用。结果表明, P已经成为南亚热带森林生态系统生物生长和重要生态过程的限制因子。 相似文献
19.
Carla L. Atkinson Krista A. Capps Amanda T. Rugenski Michael J. Vanni 《Biological reviews of the Cambridge Philosophical Society》2017,92(4):2003-2023
The role of animals in modulating nutrient cycling [hereafter, consumer‐driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973–2002 to 7.3 per year during 2003–2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal‐mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non‐CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco‐evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem‐level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems. 相似文献