首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tornaria larva of hemichordates occupies a central position in phylogenetic discussions on the relationships between Echinodermata, Hemichordata, and Chordata. Dipleurula-type larvae (tornaria and echinoderm larvae) are considered to be primary in the life cycle and thus provide a model for the ancestral animal common to all three taxa (the theory of W. Garstang). If the similarities between tornaria and the larvae in Echinodermata result from homology, their nervous systems should be basically similar as well. The present study utilizes anti-serotonin and FMRFamide antisera together with laser scanning microscopy, and transmission electron microscopy, to describe in detail the nervous system of the tornaria of Balanoglossus proterogonius. Serotonin immunoreactive neurons were found in the apical and esophageal ganglia, and in the stomach epithelium. FMRFamide immunoreactive neurons, probably sensory in nature, were detected in the apical ganglion and in the equatorial region of the stomach epithelium. At the ultrastructural level, the apical organ consists of a columnar epithelium of monociliated cells and includes a pair of symmetrical eyespots. The apical ganglion is located at its base and has a well-developed neuropil. Different types of neurons are described in the apical organ, esophagus, and stomach. Comparison with larvae in Echinodermata shows several significant differences in the way the larval nervous system is organized. This calls into question the homology between tornariae and echinoderm larvae. The possibility of convergence between the two larval types is discussed.  相似文献   

2.
The anatomy and cellular organization of serotonergic neurons in the echinoderm apical organ exhibits class-specific features in dipleurula-type (auricularia, bipinnaria) and pluteus-type (ophiopluteus, echinopluteus) larvae. The apical organ forms in association with anterior ciliary structures. Apical organs in dipleurula-type larvae are more similar to each other than to those in either of the pluteus forms. In asteroid bipinnaria and holothuroid auricularia the apical organ spans ciliary band sectors that traverse the anterior-most end of the larvae. The asteroid apical organ also has prominent bilateral ganglia that connect with an apical network of neurites. The simple apical organ of the auricularia is similar to that in the hemichordate tornaria larva. Apical organs in pluteus forms differ markedly. The echinopluteus apical organ is a single structure on the oral hood between the larval arms comprised of two groups of cells joined by a commissure and its cell bodies do not reside in the ciliary band. Ophioplutei have a pair of lateral ganglia associated with the ciliary band of larval arms that may be the ophiuroid apical organ. Comparative anatomy of the serotonergic nervous systems in the dipleurula-type larvae of the Ambulacraria (Echinodermata+Hemichordata) suggests that the apical organ of this deuterostome clade originated as a simple bilaterally symmetric nerve plexus spanning ciliary band sectors at the anterior end of the larva. From this structure, the apical organ has been independently modified in association with the evolution of class-specific larval forms.  相似文献   

3.
Traditional metazoan phylogeny classifies the Vertebrata as a subphylum of the phylum Chordata, together with two other subphyla, the Urochordata (Tunicata) and the Cephalochordata. The Chordata, together with the phyla Echinodermata and Hemichordata, comprise a major group, the Deuterostomia. Chordates invariably possess a notochord and a dorsal neural tube. Although the origin and evolution of chordates has been studied for more than a century, few authors have intimately discussed taxonomic ranking of the three chordate groups themselves. Accumulating evidence shows that echinoderms and hemichordates form a clade (the Ambulacraria), and that within the Chordata, cephalochordates diverged first, with tunicates and vertebrates forming a sister group. Chordates share tadpole-type larvae containing a notochord and hollow nerve cord, whereas ambulacrarians have dipleurula-type larvae containing a hydrocoel. We propose that an evolutionary occurrence of tadpole-type larvae is fundamental to understanding mechanisms of chordate origin. Protostomes have now been reclassified into two major taxa, the Ecdysozoa and Lophotrochozoa, whose developmental pathways are characterized by ecdysis and trochophore larvae, respectively. Consistent with this classification, the profound dipleurula versus tadpole larval differences merit a category higher than the phylum. Thus, it is recommended that the Ecdysozoa, Lophotrochozoa, Ambulacraria and Chordata be classified at the superphylum level, with the Chordata further subdivided into three phyla, on the basis of their distinctive characteristics.  相似文献   

4.
Abstract A series of laterally projecting ridges develop along the ciliary band of late stage auricularia larvae. These are similar in position to the larval arms of bipinnaria larvae and the epaulettes and vibratile lobes of echinoid pluteus larvae, all of which structures are potentially homologous. When the auricularia is converted to a doliolaria with a series of circumferential ciliary bands, the ridges of the former are retained as basic elements from which the circumferential bands of the latter then develop. There is a simple repeating pattern in the arrangement of these elements in which bands composed of two elements alternate with bands composed of four. The available evidence does not resolve the question of which of the above four larval types, whether feeding or non-feeding, is more primitive. The common plan apparent among them suggests, however, that this plan, whatever its origin, predates the diversification of larval types among eleutherozoan echinoderms.  相似文献   

5.
Serial and interval electron micrograph series were used to examine the anterior part of the ciliary band system in the bipinnaria larva of Pisaster ochraceus and the auricularia larva of Stichopus californicus for evidence of ganglion‐like organization. The bipinnaria has paired concentrations of Multipolar with Apical Processes (MAP) cells in this region that correspond in position with previously identified clusters of serotonergic and peptidergic neurones. MAP cells located in the centre of the band have well‐developed apical processes, but no cilium. Those at the sides of the band have fewer processes, but some have recumbent cilia that extend under the glycocalyx, suggesting a sensory function. Comparable cell types are not found elsewhere in the band, a clear indication that the apical parts of the ciliary band system are organized in a distinctive fashion. Two neuronal cell types were identified in the apical region of the auricularia larva, a conventional bipolar neurone that corresponds with previously described serotonergic apical cells, and more numerous MAP cells for which there is no previous record and hence, no known transmitter. Previous immunocytochemical studies are summarized and re‐examined in the light of these results. Relevant evolutionary issues are also discussed, but the data fail to provide strong evidence either for or against Garstang’s hypothesis that the chordate brain and spinal cord derive from larval ciliary bands resembling those of modern echinoderms.  相似文献   

6.
Abstract The larval ciliary bands of echinoderm bipinnaria and pluteus larvae and the hemichordate tornaria contain similar multipolar or bipolar nerve cells with unusual apical processes that run across the surface of the band between the bases of its cilia. We report on some distinctive ultrastructural features of these cells. Among these are specialized junctions that occur between the cells' apical processes and adjacent ciliary band cells near the base of each cilium. Such structures are best developed in pluteus larvae. Many nerve cells in the larval spinal cord of amphioxus also have large apical processes that cross the central lumen of the cord. We interpret our observations on these cells in terms of Garstang's hypothesis, which derives the chordate neural tube from a larval ciliary band, and suggest that multipolar cells like those in echinoderm and tornaria bands may be the antecedents of some categories of neurons in the chordate spinal cord.  相似文献   

7.
8.
Embryos and larvae of an isocrinid sea lily, Metacrinus rotundus, are described by scanning electron microscopy. Around hatching (35 h after fertilization), the outer surface of the gastrula becomes ubiquitously covered with short cilia. At 40 h, the hatched swimming embryo develops a cilia‐free zone of ectoderm on the ventral side. By 3 days, the very early dipleurula larva develops a cilia‐free zone ventrally, densely ciliated regions laterally, and a sparsely ciliated region dorsally. At this stage, the posterior and anterior ciliary bands first appear: the former runs along a low ridge separating the densely from the sparsely ciliated epidermal regions, while the latter is visible, at first discontinuously, along the boundary between the densely ciliated lateral regions and the cilia‐free ventral zone. In the late dipleurula larva (5 days after fertilization), the anterior and posterior loops of ciliary bands are well defined. The transition from the dipleurula to the semidoliolaria larva occurs at 6 days as the posterior loop becomes rearranged to form incompletely circumferential ciliary bands. The larva becomes competent to settle at this stage. The arrangement of the ciliary bands on the semidoliolaria is maintained during the second week of development, while the larva retains its competence to settle. The larval ciliary patterns described here are compared with those of stalkless crinoids and eleutherozoan echinoderms. The closest morphological similarities are between M. rotundus and the basal eleutherozoan class Asteroidea.  相似文献   

9.
The nervous system development of the sea cucumber Stichopus japonicus was investigated to explore the development of the bilateral larval nervous system into the pentaradial adult form typical of echinoderms. The first nerve cells were detected in the apical region of epidermis in the late gastrula. In the auricularia larvae, nerve tracts were seen along the ciliary band. There was a pair of bilateral apical ganglia consisted of serotonergic nerve cells lined along the ciliary bands. During the transition to the doliolaria larvae, the nerve tracts rearranged together with the ciliary bands, but they were not segmented and remained continuous. The doliolaria larvae possessed nerves along the ciliary rings but strongly retained the features of auricularia larvae nerve pattern. The adult nervous system began to develop inside the doliolaria larvae before the larval nervous system disappears. None of the larval nervous system was observed to be incorporated into the adult nervous system with immunohistochemistry. Since S. japonicus are known to possess an ancestral mode of development for echinoderms, these results suggest that the larval nervous system and the adult nervous system were probably formed independently in the last common ancestor of echinoderms.  相似文献   

10.
Among echinoderms, nonfeeding larvae usually are simplified in body shape, have uniform ciliation, and have lost the larval gut. A few species have nonfeeding larvae that express some remnant features of feeding larvae like ciliated bands and larval skeleton or larval arms, but typically their larval mouth never opens and their gut does not function. Still other species have retained the feeding larval form, a functional gut, and can feed, but they do not require food to metamorphose. The present note describes the development of a tropical holothurian, Holothuria mexicana, which hatches as a gastrula that is already generating coelomic structures. A translucent auricularia forms with a mouth that opens but becomes reduced soon thereafter. In form and ciliation this auricularia resembles a feeding larva, but it does not respond to food. A doliolaria forms on day 4 and the pentactula on day 6 post‐fertilization. Further study of this larva and that of its closely related congener, Holothuria floridana, is warranted.  相似文献   

11.
Lacalli, T. C. and Gilmour, T. H. J. 2001. Locomotory and feeding effectors of the tornaria larva of Balanoglossus biminiensis . — Acta Zoologica (Stockholm) 82 : 117–126
The tornaria ciliary bands and oesophagus were examined ultrastructurally to identify the neural components that control larval behaviour. The circumoral ciliary band is known to be innervated in part by fibres from the apical plate and adoral nerve centres. Within the band itself, however, the only neurones we could find were multipolar cells, an unusual cell type with apical processes that traverse the surface of the band. Similar cells occur in the circumoral bands of echinoderm larvae. The tornaria telotroch has a much larger nerve, but no neurones were found either in the band or nearby, so the source of the fibres in the telotroch nerve remains unknown. In addition to having different innervation, the two bands also respond differently to cholinergic agonists, which elicit telotroch arrests but have no visible effect on the circumoral band. The oesophagus has a well-developed musculature and an extensive nerve plexus. During feeding, the oesophagus repeatedly contracts, forcing excess water out along two lateral channels prior to swallowing. These channels are also sites of gill slit formation, so there is evidently a continuity between the water bypass mechanism of the larva and that of the postmetamorphic juvenile.  相似文献   

12.
We report scanning and transmission electron microscopic studies of the early development of the Hawaiian acorn worm, Ptychodera flava. In addition, we provide an immunohistochemical identification of the larval nervous system. Development occurs and is constrained within the stout chorion and fertilization envelope that forms upon the release of the cortical granules in the cytoplasm of the egg. The blastula consists of tall columnar blastomeres encircling a small blastocoel. Typical gastrulation occurs and a definitive tornaria is formed compressed within the fertilization envelope. The young tornaria hatches at 44 hr and begins to expand. The major circumoral ciliary band that crosses the dorsal surface and passes preorally and postorally is well developed. In addition, we find a nascent telotroch, as well as a midventral ciliary band that is already clearly developed. The epithelium of tornaria is a mosaic of monociliated and multiciliated cells. Immunohistochemistry with a novel neural marker, monoclonal antibody 1E11, first detects nerve cells at the gastrula stage. In tornaria, 1E11 staining nerve cells occur throughout the length of the ciliary bands, in the apical organ, in a circle around the mouth, in the esophageal epithelium and in circumpylorus regions. Axon(s) and apical processes extend from the nerve cell bodies and run in tracks along the ciliary bands. Axons extending from the preoral and postoral bands extend into the oral field and form a network. The tornaria nervous system with ciliary bands and an apical organ is rather similar to the echinoderm bipinnaria larvae.  相似文献   

13.
Under laboratory conditions the development of the starfish Asterias amurensis Lütken from Vostok Bay (Sea of Japan) was studied at 14 and 17°C. At 14°C and a salinity of 31.6–32.6, ciliated coeloblastulae hatched from egg envelopes 19 h after fertilization. At this temperature the development proceeded slowly and stopped at the stage of bipinnaria. At 17°C and normal salinity of seawater, the development of A. amurensis was successful. The swimming blastula appeared in 14 h. It took 30.5 h for the embryos to reach the gastrula stage. The larvae began swimming in a horizontal position with the apical tip ahead. The dipleurula appeared at 60 h. These larvae began feeding. At 71 h after the beginning of development, the early bipinnaria has developed. In the larva, the edged ciliated band, the preoral plate, and the anal plate were already formed. At the age of 4.2 days, the larvae reached the stage of bipinnaria and the brachiolaria stage developed by 26–28 days after fertilization. The larvae had three identical brachiolar arms with attachment papillae on their tips and an attachment disk. In 37–44 days (at 17°C) the pelagic phase of A. amurensis development was completed by the attachment of larvae to the bottom plates and termination of metamorphosis. Most likely, the specificity to a substrate is not expressed in the brachiolaria of A. amurensis. They can settle on almost any hard substrate which is coated with a bacterial film. The newly settled juvenile starfish had five well-developed arms and moved using their ambulacral podia.Original Russian Text Copyright © 2005 by Biologiya Morya, Kashenko.  相似文献   

14.
The development of the starfish Asterina (= Patiria) pectinifera (Muller et Troschel) from fertilization to metamorphosis took 27–28 days at 22°C and a salinity of 33–33.4‰. The embryonic development was completed by the release of swimming ciliary blastula from egg envelopes 13 h after fertilization. The larvae passed into the stage of gastrula and reached the stage of dipleurula in 35 h and the stage of bipinnaria in 3.5 days. At the stage of brachiolaria, by the 12th day of development, two lateral brachioles and one medioventral brachiole with papillae developed in the larvae. The attachment disk and the primordia of five radial canals of the juvenile starfish became visible by the 15th and 18th days, respectively. By the 24th–25th day, a differentiated primordium of a juvenile starfish had developed in the brachiolaria. The size of the larvae prior to settlement was 1765.4 ± 51.5 µm. Metamorphosis was completed one day after settlement.Original Russian Text Copyright ¢ 2005 by Biologiya Morya, Kashenko.  相似文献   

15.
Developmental expression of the hemichordate otx ortholog   总被引:3,自引:0,他引:3  
The phylogenetic location of hemichordates is unique because they seem to fill an evolutionary gap between echinoderms and chordates. We report here characterization of Pf-otx, a hemichordate ortholog of otx, with its embryonic and larval expression pattern. Pf-otx is initially expressed in the vegetal plate of the blastula. Expression remains evident in the archenteron through gastrulation and then disappears. A new expression domain appears near the mouth along the preoral and postoral ciliated bands in the early tornaria larva.  相似文献   

16.
17.
The effect of various combinations of temperature, which increases from 14°C up to 25°C in the summer season, and salinity, which varies from 34 to 12‰ in the early stages of development of the sea star Asterina (= Patiria) pectinifera (Müller et Troschel) from Vostok Bay, Sea of Japan, was studied. The most vulnerable process in the early ontogenesis of A. pectinifera is its embryonal development, which is completed successfully within narrow ranges of temperature (20–22°C) and salinity (34–26‰). The ability of gametes to fertilize was retained in wider ranges of temperature and salinity. The dipleurula was the most responsive of the larval stages; the resistance of blastula, bipinnaria, and brachiolaria at ages of 12.5 and 15.5 days was almost the same for fluctuations of temperature from 14 up to 25°C and salinity from 34 to 18 and 16‰ Settling of the brachiolaria and completion of metamorphosis were also responsive to variations in the environmental factors. Settling of the larvae was faster at 17°C without illumination (on the 22nd–24th days of development) than at 22°C with the day-night mode (27th–28th day of development). The lack of light apparently had a positive effect on the settling of the brachiolaria.  相似文献   

18.
The auricularia larva of sea cucumbers and tornaria larva of acorn worms share striking developmental and morphological similarities. They are regarded as not only an archetype of the nonchordate deuterostome larva, but also an archetype of the origin of chordates. Here we report the characterization and spatial expression patterns of the BMP-2/4 genes of a hemichordate acorn worm (Pf-bmp2/4) and an echinoderm sea cucumber (Sj-bmp2/4). Both the Pf-bmp2/4 and Sj-bmp2/4 genes exhibited apparently conserved expression in the region of the coelomopore complex. This is in agreement with the homology between their basic larval body plans with respect to coelomogenesis and allows us to discuss the evolutionary counterparts of the coelomopore complex in chordates.  相似文献   

19.
In vertebrates, sex is determined by a surprising variety of mechanisms. In many reptiles, the primary testis or ovary-determining trigger is regulated by egg incubation temperature. This temperature dependent sex determining (TSD) mechanism occurs in all crocodilians and marine turtles examined to date and is common in terrestrial turtles and viviparous lizards (Ewert et al. 1994. J Exp Zool 270:3-15; Lang and Andrews. 1994. J Exp Biol 270:28-44; Mrosovsky. 1994. J Exp Zool 270:16-27; Pieau. 1996. Bioessays 18:19-26; Viets et al. 1994. J Exp Zool 270:45-56; Wibbels et al. 1998. J Exp Zool 281:409-416). In contrast, sex in mammals and birds is determined chromosomally (CSD). Despite these differences, morphological development of the gonads in all these vertebrate groups appears to have been conserved through evolution. Therefore, the genetic mechanisms triggering sex determination appear not to have been conserved through evolution, although the basic genetic pathway controlling the morphological differentiation of the gonads appears to have been conserved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号