首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract 1. Variables affecting species at the ends of trophic chains may modify the success of members with which they do not directly interact. The majority of such examples involve three trophic levels, but hyperparasitoids provide an excellent opportunity to examine four‐level relationships. 2. The gregarious hyperparasitoid Aprostocetus sp. (Hymenoptera: Eulophidae) commonly attacks the primary parasitoid Alabagrus texanus (Hymenoptera: Braconidae), by far the commonest parasitoid of the moth Herpetogramma theseusalis (Lepidoptera: Crambidae). 3. Larvae of this moth feed on ferns of two families, sensitive fern Onoclea sensibilis (Dryopteridaceae) and marsh fern Thelypteris palustris (Thelypteridaceae), in the study area, an old field in Maine, U.S.A. 4. I test the hypotheses that the ferns indirectly affect the reproductive success of the hyperparasitoids and that the ferns produce similar effects at intermediate links. 5. The moths experienced similar success on the two ferns, and the primary parasitoid performed similarly on moths reared from both ferns. The hyperparasitoid parasitized similar proportions of the primary parasitoid from moths that fed on sensitive fern and marsh fern. 6. However, hyperparasitoid broods on primary parasitoids from moths feeding on marsh fern contained approximately one‐third more offspring, whose individuals were significantly larger than those from sensitive fern, even though their hosts’ sizes did not differ significantly. 7. An indirect effect, related to the primary producers, thus strongly affected Trophic Level 4 in the absence of a significant effect at intermediate levels. To the best of my knowledge, this relationship has not been previously reported in a multi‐year or field‐based study of a natural system.  相似文献   

2.
Ochtodes searlesii Mendoza‐González, Mateo‐Cid et Sentíes sp. nov. is described from Michoacán, tropical Mexican Pacific, on the basis of comparative morphology and rbcL sequence analysis. It is distinguished from other Ochtodes species by its erect axes arising from an encrusting base, its small terete fronds, regularly dichotomously branched axes, and obliquely divided zonate tetrasporangia. Phylogenetic analyses showed that three Pacific Mexican samples, from Caletilla, Zapote and La Majahuita (Michoacán), were identical and formed a distinctive and well supported Clade segregated from other species of Ochtodes from Brazil, Cuba, Ecuador, Guadeloupe and Mexico. The Mexican entity is morphologically distinct from other Ochtodes species as well. On this basis we propose a new Ochtodes species.  相似文献   

3.
A hypothesis of monophyly for the aphid genus Sitobion is tested using cladistics. A diverse sample of thirty Sitobion species from Africa, Asia, Europe and North America were included, along with six species of Macrosiphum , eight new species similar to some Sitobion , one species of Illinoia , and Dysaphis tulipae (Boyer de Fonscolombe) as outgroup . A matrix of forty-seven taxa and forty-eight characters was analysed in paup , resulting in a set of thirty-nine equally parsimonious cladograms. Despite a high degree of homoplasy in the data, the results show that Sitobion is not a monophyletic group. The endemic North American species, along with two pteridophyte-feeding species from Europe, clearly belong to a separate lineage from the other Eurasian and African species. The endemic North American species are more closely related to the type species of Macrosiphum and Illinoia than to Sitobion avenae (Fabr.), the type species of Sitobion . Two species are placed as junior synonyms of Sitobion alopecuri (Takahashi): Macrosiphum (Sitobion) salicicornii Richards, syn.n. and Sitobion sylvestri Hille Ris Lambers; syn.n. Twelve species previously listed in Sitobion are placed in Macrosiphum with six new combinations: Macrosiphum adianti (Oestlund); Macrosiphum clydesmithi Robinson, comb.n.; Macrosiphum cystopteris Robinson; Macrosiphum dryopteridis (Holman), comb.n.; Macrosiphum equiseti (Holman), comb.n.; Macrosiphum insularis (Pergande); Macrosiphum lambi Robinson, comb.n.; Macrosiphum ptericolens Patch; Macrosiphum pteridis Wilson, Macrosiphum rhamni (Clarke); Macrosiphum walkeri Robinson, comb.n.; Macrosiphum woodsiae Robinson, comb.n. Two synonyms are reinstated as valid species: Macrosiphum occidentalis (Essig) and Macrosiphum pteridis Wilson.  相似文献   

4.
Two new species of the late Paleozoic fern Scolecopteris (Marattiales) are described and their relationships within the genus are discussed. Scolecopteris charma sp.n., from Steubenville, Ohio (Duquesne Coal, Upper Pennsylvanian), is similar to species in the Oliveri group, while S. gnoma sp.n. from Providence, Kentucky (Baker Coal, Middle Pennsylvanian), compares favorably with the Latifolia species group. Scolecopteris gnoma is most similar to S. fragilis but differs in its smaller synangia and spore type. S. charma appears generally similar to S. iowensis because of its large pedicel and histologically undifferentiated walls, but differs in a number of characters such as vasculature and spore type. Despite its occurrence late in the Pennsylvanian, S. charma is thought to possess a number of primitive character states (large trilete spores, vascularized pedicels, flat pinnules with downturned margins). Using the same criteria for the much older S. gnoma, we note a number of relatively apomorphic character states (small monolete spores, unvascularized pedicels, extended pinnule margins). An outgroup analysis of species-level characters of Scolecopteris gives a better concept of primitive versus derived traits in marattialean and other ferns. Genera in the Paleozoic fern orders Filicales (Ankyropteris) and Zygopteridales (Corynepteris, Musatea) were chosen as outgroups, and the comparisons support suggestions for the polarity of several important characters. Some of these agree with previously proposed evolutionary polarities based on the geological occurrence of marattialean ferns.  相似文献   

5.
Old World climbing fern, Lygodium microphyllum, is one of the most serious invasive weeds impacting south Florida and development of biological control is crucial for sustainable management. Larvae of a small moth, Austromusotima camptozonale, were discovered defoliating L. microphyllum in Australia. Preliminary testing suggested this moth was a Lygodium specialist. Laboratory host range testing was conducted on 65 species of test plants, from 31 families, comprising seven Lygodium species, four close relatives, 45 other species of ferns and fern allies, eight agricultural crops and one gymnosperm species plus the primary host L. microphyllum. Significant oviposition occurred only on other species of Lygodium. No eggs were laid on the agricultural crops, or about half the species of non-Lygodium ferns and fern allies tested. Oviposition on the other non-Lygodium ferns was very low, except on Anemia adiantifolia and Blechnum serrulatum, which received modest egg loads, but did not support development to adult. Larval feeding was low to non-existent on all the non-Lygodium species. Larvae developed to adult only on the native, American climbing fern L. palmatum, and to a lesser extent on L. japonicum. Lygodium japonicum is a naturalized invasive weed in the United States. Colonies of A. camptozonale were unable to persist on L. palmatum and died out in two to seven generations. Freezing winter temperatures in states where L. palmatum occurs would be lethal to A. camptozonale. It was concluded that A. camptozonale would pose no threat to native or cultivated plants in North America or the Caribbean and should be considered as a weed biological control agent against L. microphyllum.  相似文献   

6.
We related pteridophytes versus tree species composition to identify surrogate measures of diversity, and complementarity of seven cloud forest fragments. Forest structure, and fern and tree composition were determined in 70 (2 × 50 m) transects. Fern density (10,150–25,080 individuals/ha) differed among sites. We recorded 83 fern species in the transects. Nonparametric richness estimators indicated that more sampling effort was needed to complete fern inventories (14 more species). However, ferns recorded outside of the transects increased richness to 103 species (six more species than predicted). Twenty-eight species were unique and rare due to special habitat requirements (Diplazium expansum, Hymenophyllum hirsutum, Melpomene leptostoma, Terpsichore asplenifolia), or were at a geographical distribution edge (Diplazium plantaginifolium, Lycopodium thyoides, Pecluma consimilis, Polypodium puberulum). Correlations between fern richness and tree richness and density were not significant, but were significant between fern richness and fern density, between epiphytic fern density and tree richness and density. Tree richness is not a good surrogate for fern diversity. Only three species were recorded in all fragments (Polypodium lepidotrichum, P. longepinnulatum, P. plebeium); thus fragments pteridophytes compositions are highly complementary, but more similar for ferns than for trees. A regional conservation approach which includes many small reserves needs to focus supplementarity on patterns of tree and fern species richness.  相似文献   

7.
Abstract.
  • 1 The generalization that ferns are under-utilized by phytophagous insects in comparison to angiosperms may be invalid because of biases involving plant growth form, plant range, and unequal sampling efforts.
  • 2 Comparison of nineteen fern species with 652 herb species, the angjosperm growth form most similar to the ferns, indicates no significant difference in the mean number of supported macrolepidopteran species. When the herbs are subdivided into annuals, biennials and perennials, only the annual herbs are significantly different than the ferns.
  • 3 Comparisons of the occurrence distributions for ferns and the herb categories also demonstrate that only the annual herbs support more macrolepidopteran species than the ferns. The same results are obtained when random assemblages of herbs are created that are the same size as the fern assemblage.
  • 4 Both the occurrence distributions and the species–area relationship for the ferns indicate that host records for insects feeding on ferns may be grossly incomplete.
  • 5 The similarity of exploitation of ferns and perennial herbs by the Macro-lepidoptera suggests that other foliage feeding insects may also use ferns at levels equivalent to angiosperms.
  相似文献   

8.
The choice of food plants often assumes critical importance for a herbivore. Although many studies have investigated host‐plant choice behavior, few have examined preferences (vs. growth and survival) at multiple stages of the life cycle, notwithstanding the importance of identifying the critical stage(s) in an animal’s life history. Fern moths Herpetogramma theseusalis (Lepidoptera: Crambidae) provide an excellent opportunity to test host‐plant choice at several stages. Fern moth larvae feed on distantly related ferns, sensitive Onoclea sensibilis and marsh fern Thelypteris palustris, and adults oviposit on both species. We examined newly hatched larvae, overwintered larvae and ovipositing females to test hypotheses predicting when host‐plant choice takes place (overwintering and mobility hypotheses: overwintering stage determines choice of substrate vs. most mobile stage chooses) and the basis for choice (optimal oviposition and enemy‐free space hypotheses: resource producing highest fecundity vs. lowest losses to enemies). We also evaluated the hypothesis that host‐associated fitness trade‐offs explain host specialization. Only ovipositing females, the most mobile stage, exhibited a clear preference (for marsh fern), consistent with the mobility hypothesis. However, their preference for marsh fern fits neither the optimal oviposition hypothesis nor the enemy‐free space hypothesis; although some larvae initially grew faster on marsh fern, adults reared from the two ferns did not differ significantly in mass and experienced marginally lower parasitism on sensitive fern. Thus, we found no host‐associated fitness trade‐offs. Overwintering losses in marsh fern plots exceeded those in sensitive fern, and mixed plots supported the most overwintered larvae. Preference for marsh fern suggests that early success drives host‐plant choice, an advantage that later disappears. Temporal variability may prevent closer fits to the hypotheses, because both ferns provide the moths with acceptable resources throughout their life cycles.  相似文献   

9.
10.
Abstract. Yucca moths (Lep., Prodoxidae) are well‐known for their obligate pollination mutualism with yuccas. In addition to the pollinators, yuccas also host many non‐pollinating yucca moths. Here the genus Prodoxus, the non‐pollinating sister group of the pollinators, is revised using morphological and molecular data, their phylogenetic relationships are analysed, and the evolution of host tissue specialization explored. Twenty‐two species are recognized, including nine new species: Prodoxus gypsicolor sp.n. , P. sonorensis sp.n. , P. carnerosanellus sp.n. , P. tamaulipellus sp.n. , P. weethumpi sp.n. , P. tehuacanensis sp.n. , P. californicus sp.n. , P. mapimiensis sp.n. and P. atascosanellus sp.n. Prodoxus y‐inversus Riley, P. coloradensis Riley and P. sordidus Riley are redescribed. The genus Agavenema is synonymized with Prodoxus. Phylogenetic analyses indicated that stalk‐feeding is basal within the group, that there are three separate origins of fruit‐feeding, and one origin of leaf‐mining from a stalk‐feeding ancestor. Although species with different feeding habits often coexist within hosts, the analyses suggest that ecological specialization and diversification within a host only may have occurred within one or possibly two hosts.  相似文献   

11.
Abstract Ferns, bryophytes and lichens are the most diverse groups of plants in wet forests in south‐eastern Australia. However, management of this diversity is limited by a lack of ecological knowledge of these groups and the difficulty in identifying species for non‐experts. These problems may be alleviated by the identification and characterization of suitable proxies for this diversity. Epiphytic substrates are potential proxies. To evaluate the significance of some epiphytic substrates, fern and bryophyte assemblages on a common tree‐fern species, Dicksonia antarctica (soft tree‐fern), were compared with those on a rare species, Cyathea cunninghamii (slender tree‐fern), in eastern Tasmania, Australia. A total of 97 fern and bryophyte species were recorded on D. antarctica from 120 trunks at 10 sites, and 64 species on C. cunninghamii from 39 trunks at four of these sites. The trunks of C. cunninghamii generally supported fewer species than D. antarctica, but two mosses (particularly Hymenodon pilifer) and one liverwort showed significant associations with this host. Several other bryophytes and epiphytic ferns showed an affinity for the trunks of D. antarctica. Species assemblages differed significantly between both sites and hosts, and the differences between hosts varied significantly among sites. The exceptionally high epiphytic diversity associated with D. antarctica suggests that it plays an important ecological role in Tasmanian forests. Evidently C. cunninghamii also supports a diverse suite of epiphytes, including at least one specialist species.  相似文献   

12.
Symbioses involving arbuscular mycorrhizal fungi (AMF) are among the most important ecological associations for many plant species. The diversity of AMF associated with ferns, however, remains poorly studied. Using recently designed Glomus-specific primers, we surveyed the AMF community associated with ferns from deciduous, broad-leaved second-growth forest habitats at the eastern edge of the piedmont region of central Virginia, USA. Results indicate that this molecular approach may be a useful tool for detecting AMF in ferns compared to traditional techniques based on morphology. Over 30 potential fungal ribotypes were identified from eight fern species using denaturing gradient gel electrophoresis. Fungal ribotypes were found to differ widely in terms of (1) the number of fern partners with which they interact and (2) their relative frequency within each fern. Sequence analysis of fungal isolates from three species of fern indicated that the primers were generally highly specific for Glomus species but some non-target DNA was also amplified. Cloned polymerase chain reaction (PCR) products from Polystichum acrostichoides and Osmunda regalis revealed several phylogenetically distinct Glomus species. A single Glomus species was identified in the cloned PCR products from Botrychium virginianum. These findings challenge the hypothesis that the extent or degree of fern–fungal symbiosis is somehow tied to root complexity. Environmental factors appear to influence the suite of AMF that form partnerships with ferns. Some species of fern from similar habitats associated with dissimilar fungal partners (e.g., P. acrostichoides and Athyrium filix-femina var. asplenioides), whereas others harbored uniform fungal communities (e.g., Asplenium platyneuron). The significance of these data in terms of ecological and evolutionary dynamics of the AMF–fern symbiosis is discussed. Brittany West, Jessica Brandt, and Kay Holstien contributed equally to this work.  相似文献   

13.
Dennstaedtia punctilobula (hay‐scented fern) can act as a native invasive species in forests in eastern North America where prolonged deer browsing occurs in stands with partially open overstory canopies. Ferns dominate the understory with a 60‐cm tall canopy, with little regeneration of native tree species. It has been hypothesized that, once established, ferns may continue to inhibit tree regeneration after deer browsing has been reduced. To test this hypothesis, we documented the pattern of recovery of the tree seedling understory in plantations of Pinus strobus (white pine) and Pinus resinosa (red pine) on the Quabbin Reservation watershed protection forest in central Massachusetts, where after 40 years of intensive deer browsing the deer herd was rapidly reduced through controlled hunting. Dense fern understories occur on nearly 4,000 ha of the predominantly oak–pine forest. Three years after deer herd reduction, stands with the highest density fern cover (77% of plots with>90% cover) had significantly fewer seedlings at least 30 cm in height, compared with stands with lower fern density, and those seedlings consisted almost entirely of Betula lenta (black birch) and white pine. Height growth analysis showed that black birch and white pine grew above the height of the fern canopy in 3 and 6 years, respectively. In contrast, two common species, Fraxinus americana (white ash) and Quercus rubra (red oak), grew beneath the dense fern cover for 5 years with height growth less than 5 cm/yr after the first year. A study of spring phenology indicated that the ability of black birch to grow through the fern canopy might have been due to its early leaf development in spring before the fern canopy was formed, in contrast to oak and ash with delayed leaf development. Thus, the ferns showed differential interference among species with seedling development after reduction of deer browse.  相似文献   

14.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

15.
We investigated aspects of the foraging behaviour and activity patterns of free‐ranging common duikers (Sylvicapra grimmia) within the Soutpansberg, South Africa. We used giving‐up densities (GUD) and camera traps to test for habitat selection and patch‐use behaviour by common duikers inhabiting a grassland containing distinct ‘islands' of woody vegetation. Foraging in or around a wooded island was affected by its surrounding vegetation. GUDs were significantly lower in portions dominated by tall grass and scattered ferns and highest in areas with open short grass and thick fern. Using grids of 5 × 5 stations, we mapped the duikers' foraging on a larger scale that incorporated neighbouring rocky hillsides. The duikers preferred feeding in areas with tall grass and scattered fern (sufficient cover and escape routes), followed by the wooded islands and thick fern (lack of sightlines/escape routes and presence of predator‐ambush sites), whereas little foraging occurred at the edges and rocky areas (hard substrate that impede escape potential). Photos (total 873) revealed solitary activity, highest in the late afternoon. Photos of vigilant individuals were mostly from rocky and fern habitats. Our results suggest that the duikers allocated their feeding efforts, activity and vigilance patterns to attune to their perceived risk of predation within their heterogeneous environment.  相似文献   

16.
The epiphytic Bird's Nest Fern (Asplenium nidus complex) has a large basket‐shaped rosette that accumulates leaf litter. We investigated the role of these ferns in supporting invertebrate populations in the primary lowland dipterocarp forest of Danum Valley, Sabah, Malaysia. Ferns were divided into three size classes: large (rosette diameter >60 cm), intermediate (30–60 cm), and small (<30 cm). Seven hectares of forest were surveyed: the canopy had a mean density of 30 large ferns/ha and 20 intermediate ferns/ha. Six large and five intermediate ferns were removed from the crowns of Parashorea tomentella (Dipterocarpaceae) at heights between 39 and 52 m. The largest ferns had fresh weights of ca 200 kg. The mean animal abundance in large and intermediate ferns was 41,000 and 8000, respectively. Termites and ants represented at least 90 percent of the abundance in these ferns. Of die 11 ferns, 4 contained a nest of Hospitalitermes rufus (Nasutitermitinae), while another contained a nest of an undescribed species of Hospitalitermes. An additional 56 small ferns were removed from die low canopy (2–6 m above the forest floor), of which only 1 contained a termite nest (Nasutitermes neoparvus). These results suggest that Bird's Nest Ferns contain ca 0.5 million termites/ha and contribute almost one ton (dry mass) of suspended soil and plant material/ha. Five of the trees containing large ferns were fogged immediately before the removal of die ferns. From these samples we were able to estimate the total number of animals in each tree crown. When each estimate was added to die abundance in each fern, the results suggested that a single large fern may contain from 7 to 93 percent of die total number of invertebrates in die crown. Although these results must be treated with caution because of die small sample size, they have important implications for studies of canopy invertebrates.  相似文献   

17.
Diverse temperate forest types and a high atmospheric humidity have recently been suggested for the Eocene source area of Baltic amber. However, ferns are astonishingly rare as inclusions in this amber, which is in contrast to other seed‐free land plants, fungi, and lichens. Moreover, the identities of some of the few described putative fern taxa are dubious, and some fossils were even assigned to the Paleozoic seed fern genera Alethopteris, Pecopteris and to the form genus Sphenopteris containing Paleozoic and Mesozoic fern‐like leaf fossils. Here, we review previously described fern inclusions from Baltic amber and identify further fern‐like leaf inclusions as belonging to the extant angiosperm genus Comptonia (sweet ferns, Myricaceae). We conclude that only one taxon, Matonia striata (Matoniaceae), can with confidence be identified as a Polypodiopsida representative. Although “Pecopterishumboldtiana is so far only known as sterile foliage, its leaf morphology strongly suggests that also this taxon belongs to the Polypodiopsida rather than to any other tracheophyte lineage. We propose accommodating “Pecopterishumboldtiana in the new genus Berendtiopteris. “Alethopterisserrata and “Sphenopteris” phyllocladoides are not to be regarded as evidence of ferns from Baltic amber. Reinvestigation of the holotypes of these two taxa did not reveal to which tracheophyte lineages these fossils belong. We suggest that the scarcity of fern remains from Baltic amber may reflect both a relatively low fern diversity in the source area of the fossil resin, and an absence or rarity of epiphytic and climbing ferns as observed in modern temperate forest ecosystems.  相似文献   

18.
19.
Fern-feeding insects in Britain are mainly found on mature fronds in late summer. Six fern species (Dtyopteris filix-mas, D. dilatata, D. borreri, Phyllitis scolopendrium, Polyslkhum setiferum and Polypodium vulgare) were analysed for fibre, lignin, cellulose, tannins, cyanogenesis and thiaminase activity in an attempt to determine the biochemical basis for this seasonal pattern of attack. A bioassay was also carried out, using frond material incorporated in the diet of Spodoptera littoralis, to determine the effects of seasonal changes in fern toxins on a non-adapted, insect herbivore. The young fronds of all six species had a high protein content and low fibre-lignocellulose; protein levels decreased and cell wall materials increased as the fronds matured. Tannin concentrations and thiaminase activity showed a less consistent seasonal pattern. Tannins were present in the highest concentration in the young fronds of D. borreri, Polystichum and Polypodium and decreased with season; D. dilatata, Polystichum and Polypodium showed a similar pattern of thiaminase activity. The other species showed no strong seasonality in the levels of either tannins or thiaminase. No cyanogenic activity was detected in any of the fern species. Frond material from all six species decreased survivorship and growth rates of Spodoptera larvae. Larval performance and growth on diets containing fern material from young immature fronds was generally poorer than on diets containing material from mature fronds, collected later in the season. Neither tannin concentrations nor thiaminase activity levels closely corresponded to the observed interspecific and seasonal patterns of larval development and mortality, and other toxins must be involved. It is concluded that ferns are highly toxic to non-adapted herbivorous insects but the effects on adapted species are unknown. The restricted seasonal occurrence of a small number of insect species exhibiting specialized feeding habits suggests, however, that biochemical properties of the ferns determine this pattern of attack and limit the number of species which are able to exploit ferns as food resources.  相似文献   

20.
Old World climbing fern, Lygodium microphyllum, is a serious invasive weed in south Florida. Development of biological control is vital for sustainable management of L. microphyllum. Neomusotima conspurcatalis was discovered in Hong Kong in 1997 and was subsequently found causing feeding damage on L. microphyllum in much of its native range in Asia. Quarantine testing of N. conspurcatalis used 37 non-Lygodium fern species representative of New World genera of cultivated ferns and fern allies, one gymnosperm, three crop species, six Lygodium species, and the primary host L. microphyllum. No significant oviposition or feeding was observed on any of the 41 non-Lygodium species evaluated. Oviposition and feeding occurred on all Lygodium species, but amounts were low and usually significantly less than observed on L. microphyllum. The exception was L. japonicum, which was preferred as an oviposition host. Neomusotima conspurcatalis was only able to complete development on L. japonicum and L. palmatum, but survival on these species was only half that occurring on L. microphyllum. Neomusotima conspurcatalis is a Lygodium specialist. Lygodium japonicum is an invasive weed in the United States. Lygodium palmatum is restricted to areas of the United States where freezing winter temperatures would be lethal to N. conspurcatalis. It was concluded that N. conspurcatalis would pose no threat to native or cultivated plants in North America or the Caribbean and should be considered for biocontrol of L. microphyllum. A release petition was submitted in 2005. An USDA-APHIS release permit for N. conspurcatalis was issued in 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号