首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is much interest in understanding how population demography impacts upon social evolution. Here, we consider the impact of rate and pattern of dispersal upon a classic social evolutionary trait--the sex ratio. We recover existing analytical results for individual dispersal, and we extend these to allow for budding dispersal. In particular, while a cancelling of relatedness and kin competition effects means that the sex ratio is unaffected by the rate of individual dispersal, we find that a decoupling of relatedness and kin competition means that budding dispersal favours increasingly female-biased sex ratios. More generally, our analysis illustrates the relative ease with which biological problems involving class structure can be solved using a kin selection approach to social evolution theory.  相似文献   

2.
The outcome of sexual conflict can depend on the social environment, as males respond to changes in the inclusive fitness payoffs of harmfulness and harm females less when they compete with familiar relatives. Theoretical models also predict that if limited male dispersal predictably enhances local relatedness while maintaining global competition, kin selection can produce evolutionary divergences in male harmfulness among populations. Experimental tests of these predictions, however, are rare. We assessed rates of dispersal in female and male seed beetles Callosobruchus maculatus, a model species for studies of sexual conflict, in an experimental setting. Females dispersed significantly more often than males, but dispersing males travelled just as far as dispersing females. Next, we used experimental evolution to test whether limiting dispersal allowed the action of kin selection to affect divergence in male harmfulness and female resistance. Populations of C. maculatus were evolved for 20 and 25 generations under one of three dispersal regimens: completely free dispersal, limited dispersal and no dispersal. There was no divergence among treatments in female reproductive tract scarring, ejaculate size, mating behaviour, fitness of experimental females mated to stock males or fitness of stock females mated to experimental males. We suggest that this is likely due to insufficient strength of kin selection rather than a lack of genetic variation or time for selection. Limited dispersal alone is therefore not sufficient for kin selection to reduce male harmfulness in this species, consistent with general predictions that limited dispersal will only allow kin selection if local relatedness is independent of the intensity of competition among kin.  相似文献   

3.
In animal societies, characteristic demographic and dispersal patterns may lead to genetic structuring of populations, generating the potential for kin selection to operate. However, even in genetically structured populations, social interactions may still require kin discrimination for cooperative behaviour to be directed towards relatives. Here, we use molecular genetics and long‐term field data to investigate genetic structure in an adult population of long‐tailed tits Aegithalos caudatus, a cooperative breeder in which helping occurs within extended kin networks, and relate this to patterns of helping with respect to kinship. Spatial autocorrelation analyses reveal fine‐scale genetic structure within our population, such that related adults of either sex are spatially clustered following natal dispersal, with relatedness among nearby males higher than that among nearby females, as predicted by observations of male‐biased philopatry. This kin structure creates opportunities for failed breeders to gain indirect fitness benefits via redirected helping, but crucially, most close neighbours of failed breeders are unrelated and help is directed towards relatives more often than expected by indiscriminate helping. These findings are consistent with the effective kin discrimination mechanism known to exist in long‐tailed tits and support models identifying kin selection as the driver of cooperation.  相似文献   

4.
Knowledge of kin relationships between members of wild animal populations has broad application in ecology and evolution research by allowing the investigation of dispersal dynamics, mating systems, inbreeding avoidance, kin recognition, and kin selection as well as aiding the management of endangered populations. However, the assessment of kinship among members of wild animal populations is difficult in the absence of detailed multigenerational pedigrees. Here, we first review the distinction between genetic relatedness and kinship derived from pedigrees and how this makes the identification of kin using genetic data inherently challenging. We then describe useful approaches to kinship classification, such as parentage analysis and sibship reconstruction, and explain how the combined use of marker systems with biparental and uniparental inheritance, demographic information, likelihood analyses, relatedness coefficients, and estimation of misclassification rates can yield reliable classifications of kinship in groups with complex kin structures. We outline alternative approaches for cases in which explicit knowledge of dyadic kinship is not necessary, but indirect inferences about kinship on a group‐ or population‐wide scale suffice, such as whether more highly related dyads are in closer spatial proximity. Although analysis of highly variable microsatellite loci is still the dominant approach for studies on wild populations, we describe how the long‐awaited use of large‐scale single‐nucleotide polymorphism and sequencing data derived from noninvasive low‐quality samples may eventually lead to highly accurate assessments of varying degrees of kinship in wild populations.  相似文献   

5.
A surprising result emerging from the theory of sex allocation is that the optimal sex ratio is predicted to be completely independent of the rate of dispersal. This striking invariance result has stimulated a huge amount of theoretical and empirical attention in the social evolution literature. However, this sex-allocation invariant has been derived under the assumption that an individual''s dispersal behaviour is not modulated by population density. Here, we investigate how density-dependent dispersal shapes patterns of sex allocation in a viscous-population setting. Specifically, we find that if individuals are able to adjust their dispersal behaviour according to local population density, then they are favoured to do so, and this drives the evolution of female-biased sex allocation. This result obtains because, whereas under density-independent dispersal, population viscosity is associated not only with higher relatedness—which promotes female bias—but also with higher kin competition—which inhibits female bias—under density-dependent dispersal, the kin-competition consequences of a female-biased sex ratio are entirely abolished. We derive analytical results for the full range of group sizes and costs of dispersal, under haploid, diploid and haplodiploid modes of inheritance. These results show that population viscosity promotes female-biased sex ratios in the context of density-dependent dispersal.  相似文献   

6.
Kin selection can explain the evolution of cooperative breeding and the distribution of relatives within a population may influence the benefits of cooperative behaviour. We provide genetic data on relatedness in the cooperatively breeding cichlid Neolamprologus pulcher. Helper to breeder relatedness decreased steeply with increasing helper age, particularly to the breeding males. Helper to helper relatedness was age‐assortative and also declined with age. These patterns of relatedness could be attributed to territory take‐overs by outsiders when breeders had disappeared (more in breeding males), between‐group dispersal of helpers and reproductive parasitism. In six of 31 groups females inherited the breeding position of their mother or sister. These matrilines were more likely to occur in large groups. We conclude that the relative fitness benefits of helping gained through kin selection vs. those gained through direct selection depend on helper age and sex.  相似文献   

7.
W. D. Hamilton famously suggested that the inflated relatedness of full sisters under haplodiploidy explains why all workers in the social hymenoptera are female. This suggestion has not stood up to further theoretical scrutiny and is not empirically supported. Rather, it appears that altruistic sib‐rearing in the social hymenoptera is performed exclusively by females because this behaviour has its origins in parental care, which was performed exclusively by females in the ancestors of this insect group. However, haplodiploidy might still explain the sex of workers if this mode of inheritance has itself been responsible for the rarity of paternal care in this group. Here, we perform a theoretical kin selection analysis to investigate the evolution of paternal care in diploid and haplodiploid populations. We find that haplodiploidy may either inhibit or promote paternal care depending on model assumptions, but that under the most plausible scenarios it promotes – rather than inhibits – paternal care. Our analysis casts further doubt upon there being a causal link between haplodiploidy and eusociality.  相似文献   

8.
Sib‐mating avoidance is a pervasive behaviour that is expected to evolve in species subject to inbreeding depression. Although laboratory studies provide elegant demonstrations, small‐scaled bioassays minimize the costs of mate finding and choice, and thus may produce spurious findings. We therefore combined laboratory experiments with field observations to examine the existence of inbreeding avoidance using the parasitoid wasp Venturia canescens. In the laboratory, our approach consisted of mate‐choice experiments to assess kin discrimination in population cages with competitive interactions. A higher mating probability after sib rejections suggested that females could discriminate their sibs; however, in contrast to previous findings, sib‐mating avoidance was not observed. To compare our laboratory results to field data, we captured 241 individuals from two populations. Females laid eggs in the lab, and 226 daughters were obtained. All individuals were genotyped at 18 microsatellite loci, which allowed inference of the genotype of each female's mate and subsequently the relatedness within each mating pair. We found that the observed rate of sib‐mating did not differ from the probability that sibs encountered one another at random in the field, which is consistent with an absence of sib‐mating avoidance. In addition, we detected a weak but significant male‐biased dispersal, which could reduce encounters between sibs. We also found weak fitness costs associated with sib‐mating. As such, the sex‐biased dispersal that we found is probably sufficient to mitigate these costs. These results imply that kin discrimination has probably evolved for purposes other than mate choice, such as superparasitism avoidance.  相似文献   

9.
Hamilton demonstrated that the evolution of cooperative behaviour is favoured by high relatedness, which can arise through kin discrimination or limited dispersal (population viscosity). These two processes are likely to operate with limited overlap: kin discrimination is beneficial when variation in relatedness is higher, whereas limited dispersal results in less variable and higher average relatedness, reducing selection for kin discrimination. However, most empirical work on eukaryotes has focused on kin discrimination. To address this bias, we analysed how kin discrimination and limited dispersal interact to shape helping behaviour across cooperatively breeding vertebrates. We show that kin discrimination is greater in species where the: (i) average relatedness in groups is lower and more variable; (ii) effect of helpers on breeders reproductive success is greater; and (iii) probability of helping was measured, rather than the amount of help provided. There was also an interaction between these effects with the correlation between the benefits of helping and kin discrimination being stronger in species with higher variance in relatedness. Overall, our results suggest that kin discrimination provides a route to indirect benefits when relatedness is too variable within groups to favour indiscriminate cooperation.  相似文献   

10.
The evolution of sociality remains a challenge in evolutionary biology and a central question is whether association between kin is a critical factor favouring the evolution of cooperation. This study examines genetic structure of Anelosimus studiosus, a spider exhibiting polymorphic social behaviour. Two phenotypes have been identified: an ‘asocial’ phenotype with solitary female nests and a ‘social’ phenotype with multi‐female/communal nests. To address the questions of whether these phenotypes are differentiated populations and whether cooperative individuals are closely related, we used microsatellites to analyse individuals from both communal and solitary nests. We found no evidence of differentiation between social and solitary samples, implying high rates of interbreeding. This is consistent with the hypothesis that these phenotypes coexist as a behavioural polymorphism within populations. Pairwise relatedness coefficients were used to test whether cooperating individuals are more closely related than expected by chance. Pairwise relatedness of females sharing communal webs averaged 0.25, the level expected for half‐siblings and significantly more closely related than random pairs from the population. Solitary females collected at similar distances to the communal spider pairs were also more closely related than expected by chance (mean relatedness = 0.18), but less related than social pairs. These results imply that low dispersal contributes to increase likelihood of interaction between kin, but relatedness between social pairs is not explained by spatial structure alone. We propose that these phenotypes represent stages in the evolution of sociality, where viscous population structure creates opportunities for kin selection and cooperation is favoured under certain environmental conditions.  相似文献   

11.
Changes in population size of local populations of birds have usually been interpreted in relation to adult return rate and recruitment of young individuals after natal dispersal. Little is known about the importance of redistribution of adult individuals through breeding dispersal. The small Norwegian population of ortolan buntings Emberiza hortulana has a patchy distribution with about 30 long‐term local populations. During a period of general population decline (29% decrease over 7 years), the population trends of local populations (measured as number of males recorded) were highly variable, with some even increasing four‐fold. Comparisons of demographic parameters showed that adult immigration rate (i.e. dispersal of adult males) explained both yearly changes in male population size and population trends over the whole study period better than adult return rate or adult emigration rate, or a measure of recruitment of young males. Adult immigration rates and recruitment rates were correlated, suggesting that both young and adult males find the same places attractive. In the study area, adult sex ratio was strongly male‐biased, and immigration rate was higher when local sex ratio was less skewed. In addition, less skewed sex ratio was related to higher adult return rate and lower emigration rate. We found no relationships between measures of breeding success and population change. We suggest that conspecific attraction may explain the observed patterns. Some local populations may act as hot‐spots attracting adult males from other populations. Thus, local population changes need not reflect overall population growth rate, but may be a consequence of redistribution of adult birds.  相似文献   

12.
According to kin selection theory, individuals show less aggression towards their relatives. Limited dispersal promotes interactions among relatives but also increases competition among them. The evolution of cooperation in viscous populations has been subject of mainly theoretical exploration. We investigated the influence of relatedness on aggression in males of entomopathogenic nematode Steinernema longicaudum that engage in lethal fighting. In a series of in vitro experiments, we found that both competitor male group size and relatedness influence male mortality rates. Higher relatedness led to progressively lower rates of male mortality. In experimentally infected insects, wherein large numbers of males and females interact, the proportion of dead and paralysed (= terminally injured) males was higher when infection was established by infective juveniles originating from a mixture of three lines than in those infected by a single line. The results collectively show that Steinernema longicaudum males recognize their kin and consequently male mortality rates are lower in groups consisting of more related males. Furthermore, this monotonic negative relationship between aggression and relatedness suggests that kin selection benefits are still substantial even under extreme competition. Our experiments also suggest that kin recognition in entomopathogenic nematodes has a genetic basis rather than being strictly based on environmental cues. We discuss our findings within the theoretical context of the evolution of altruistic/cooperative behaviour in structured populations.  相似文献   

13.
Optimality theory of sex allocation in structured populations has proved remarkably successful in explaining patterns of facultative sex ratio behaviour in numerous species. Extensions to the basic theory have included more specific aspects of species biology, including the relatedness of interacting individuals. We considered the sex ratio decisions made by female Nasonia vitripennis wasps when they were ovipositing on a patch with either relatives or nonrelatives. Theory predicts that females should produce more female-biased sex ratios when ovipositing with relatives, for example sisters, than with unrelated females. This is because related females should limit the level of local mate competition between their sons for female partners. Contrary to theory, two experiments showed that female sex ratio behaviour was unaffected by the relatedness of their oviposition partner, and was also unrelated to an environmental cue that could signal relatedness, i.e. whether females responded differently to sisters emerging from the same or a different host. Instead, in both experiments, we found that only wasp strain significantly influenced sex ratio. A meta-analysis of studies conducted on a range of species on the effects of the relatedness of oviposition partners on sex ratio failed to show the predicted pattern. We discuss why females appear to behave in a maladaptive way when allocating sex under these conditions, and suggest that weak selection and/or conflict between females over optimal sex ratios may influence the evolution of kin discrimination.  相似文献   

14.
Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex‐biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female‐biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.  相似文献   

15.
Defining computable analytical measures of the effects of selection in populations with demographic and environmental stochasticity is a long-standing problem. We derive an analytical measure which takes in account all consequences of the discrete nature of deme size. Expressions of this measure are detailed for infinite island models of population structure. As an illustration we consider the evolution of dispersal in populations made of small demes with environmental and demographic stochasticity. We confirm some results obtained from the analysis of models based on deterministic approximations. In particular, when there is an Allee effect, we show that evolution of the dispersal rate may lead the metapopulation to extinction. Thus, selection on the dispersal rate could restrict the distribution of species subject to Allee effects. This selection-driven extinction is prevented by kin selection when the environmental extinction rate is small.  相似文献   

16.
In highly fluctuating populations with complex social systems, genetic patterns are likely to vary in space and time due to demographic and behavioural processes. Cyclic rodents are extreme examples of demographically instable populations that often exhibit strong social organization. In such populations, kin structure and spacing behaviour may vary with density fluctuations and impact both the composition and spatial structure of genetic diversity. In this study, we analysed the multiannual genetic structure of a cyclic rodent, Microtus arvalis, using a sample of 875 individuals trapped over three complete cycles (from 1999 to 2007) and genotyped at 10 microsatellite loci. We tested the predictions that genetic diversity and gene flow intensity vary with density fluctuations. We found evidences for both spatial scale‐dependant variations in genetic diversity and higher gene flow during high density. Moreover, investigation of sex‐specific relatedness patterns revealed that, although dispersal is biased toward males in this species, distances moved by both sexes were lengthened during high density. Altogether, these results suggest that an increase in migration with density allows to restore the local loss of genetic diversity occurring during low density. We then postulate that this change in migration results from local competition, which enhances female colonization of empty spaces and male dispersal among colonies.  相似文献   

17.
The methods of inclusive fitness provide a powerful analysis of the action of selection on social behaviour. The key component of this analysis is the concept of relatedness R. In infinite populations, a standard method of calculating relatedness coefficients is through coefficients of consanguinity using the notion of genetic identity by descent. In this paper, we show that this approach can also be made to work in finite populations and we assume here that the population has a homogeneous structure, such as an island model. We demonstrate that, under the assumption that genetic effects are small and additive, the resulting formulation of inclusive fitness is equivalent to other significant measures of selection in finite populations, including the change in average allele frequency and fixation probability. The results are illustrated for a model of the evolution of cooperation in a finite island population.  相似文献   

18.
There is growing interest in resolving the curious disconnect between the fields of kin selection and sexual selection. Rankin's (2011, J. Evol. Biol. 24 , 71–81) theoretical study of the impact of kin selection on the evolution of sexual conflict in viscous populations has been particularly valuable in stimulating empirical research in this area. An important goal of that study was to understand the impact of sex‐specific rates of dispersal upon the coevolution of male‐harm and female‐resistance behaviours. But the fitness functions derived in Rankin's study do not flow from his model's assumptions and, in particular, are not consistent with sex‐biased dispersal. Here, we develop new fitness functions that do logically flow from the model's assumptions, to determine the impact of sex‐specific patterns of dispersal on the evolution of sexual conflict. Although Rankin's study suggested that increasing male dispersal always promotes the evolution of male harm and that increasing female dispersal always inhibits the evolution of male harm, we find that the opposite can also be true, depending upon parameter values.  相似文献   

19.
Darwinian evolution consists of the gradual transformation of heritable traits due to natural selection and the input of random variation by mutation. Here, we use a quantitative genetics approach to investigate the coevolution of multiple quantitative traits under selection, mutation, and limited dispersal. We track the dynamics of trait means and of variance–covariances between traits that experience frequency‐dependent selection. Assuming a multivariate‐normal trait distribution, we recover classical dynamics of quantitative genetics, as well as stability and evolutionary branching conditions of invasion analyses, except that due to limited dispersal, selection depends on indirect fitness effects and relatedness. In particular, correlational selection that associates different traits within‐individuals depends on the fitness effects of such associations between‐individuals. We find that these kin selection effects can be as relevant as pleiotropy for the evolution of correlation between traits. We illustrate this with an example of the coevolution of two social traits whose association within‐individuals is costly but synergistically beneficial between‐individuals. As dispersal becomes limited and relatedness increases, associations between‐traits between‐individuals become increasingly targeted by correlational selection. Consequently, the trait distribution goes from being bimodal with a negative correlation under panmixia to unimodal with a positive correlation under limited dispersal.  相似文献   

20.
Kin selection theory predicts that costly cooperative behaviors evolve most readily when directed toward kin. Dispersal plays a controversial role in the evolution of cooperation: dispersal decreases local population relatedness and thus opposes the evolution of cooperation, but limited dispersal increases kin competition and can negate the benefits of cooperation. Theoretical work has suggested that plasticity of dispersal, where individuals can adjust their dispersal decisions according to the social context, might help resolve this paradox and promote the evolution of cooperation. Here, we experimentally tested the hypothesis that conditional dispersal decisions are mediated by a cooperative strategy: we quantified the density‐dependent dispersal decisions and subsequent colonization efficiency from single cells or groups of cells among six genetic strains of the unicellular Tetrahymena thermophila that differ in their aggregation level (high, medium, and low), a behavior associated with cooperation strategy. We found that the plastic reaction norms of dispersal rate relative to density differed according to aggregation level: highly aggregative genotypes showed negative density‐dependent dispersal, whereas low‐aggregation genotypes showed maximum dispersal rates at intermediate density, and medium‐aggregation genotypes showed density‐independent dispersal with intermediate dispersal rate. Dispersers from highly aggregative genotypes had specialized long‐distance dispersal phenotypes, contrary to low‐aggregation genotypes; medium‐aggregation genotypes showing intermediate dispersal phenotype. Moreover, highly aggregation genotypes showed evidence for beneficial kin‐cooperation during dispersal. Our experimental results should help to resolve the evolutionary conflict between cooperation and dispersal: cooperative individuals are expected to avoid kin‐competition by dispersing long distances, but maintain the benefits of cooperation by dispersing in small groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号