首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Black plumage is expected to absorb and retain more heat and provide better protection against UV radiation compared with lighter plumages. Black plumage is common in species of the genera Turdus and Platycichla that inhabit highlands across different regions of the world. Considering this geographical recurrent pattern we tested the hypothesis that black plumage in these two genera has evolved as a co‐adaptive response to inhabiting highlands, reconstructing ancestral character states for plumage and altitudinal distribution using maximum‐likelihood methods, and a Pagel's multistate discrete method. For these analyses, we used a phylogeny based on mitochondrial and nuclear DNA regions that included 60 of the 66 recognized species in the genera Turdus and Platycichla. We found that black‐plumage coloration evolved independently on eight occasions within these two genera, and species with black plumage occur more often at highlands. Our results support the hypothesis that black‐plumage is adaptative in highlands; but, studies in other bird groups with black‐plumage inhabiting at the same elevations will provide evidence for this adaptive hypothesis or if the evolution of black‐plumage in other groups is explained by other evolutionary forces.  相似文献   

2.
Genetic variation in the melanocortin‐1 receptor (MC1R) locus is responsible for color variation, particularly melanism, in many groups of vertebrates. Fairy‐wrens, Maluridae, are a family of Australian and New Guinean passerines with several instances of dramatic shifts in plumage coloration, both intra‐ and inter‐specifically. A number of these color changes are from bright blue to black plumage. In this study, we examined sequence variation at the MC1R locus in most genera and species of fairy‐wrens. Our primary focus was subspecies of the white‐winged fairy‐wren Malurus leucopterus in which two subspecies, each endemic to islands off the western Australian coast, are black while the mainland subspecies is blue. We found fourteen variable amino acid residues within M. leucopterus, but at only one position were alleles perfectly correlated with plumage color. Comparison with other fairy‐wren species showed that the blue mainland subspecies, not the black island subspecies, had a unique genotype. Examination of MC1R protein sequence variation across our sample of fairy‐wrens revealed no correlation between plumage color and sequence in this group. We thus conclude that amino acid changes in the MC1R locus are not directly responsible for the black plumage of the island subspecies of M. leucopterus. Our examination of the nanostructure of feathers from both black and blue subspecies of M. leucopterus and other black and blue fairy‐wren species clarifies the evolution of black plumage in this family. Our data indicate that the black white‐winged fairy‐wrens evolved from blue ancestors because vestiges of the nanostructure required for the production of blue coloration exist within their black feathers. Based on our phylogeographic analysis of M. leucopterus, in which the two black subspecies do not appear to be each other's closest relatives, we infer that there have been two independent evolutionary transitions from blue to black plumage. A third potential transition from blue to black appears to have occurred in a sister clade.  相似文献   

3.
Some birds undergo seasonal colour change by moulting twice each year, typically alternating between a cryptic, non‐breeding plumage and a conspicuous, breeding plumage (‘seasonal plumage colours’). We test for potential drivers of the evolution of seasonal plumage colours in all passerines (N = 5901 species, c. 60% of all birds). Seasonal plumage colours are uncommon, having appeared on multiple occasions but more frequently lost during evolution. The trait is more common in small, ground‐foraging species with polygynous mating systems, no paternal care and strong sexual dichromatism, suggesting it evolved under strong sexual selection and high predation risk. Seasonal plumage colours are also more common in species predicted to have seasonal breeding schedules, such as migratory birds and those living in seasonal climates. We propose that seasonal plumage colours have evolved to resolve a trade‐off between the effects of natural and sexual selection on colouration, especially in seasonal environments.  相似文献   

4.
Species delimitation has important consequences for the management of endangered species. Species‐level taxonomy in the genus Crypturellus (Tinamidae) has been based largely on plumage characters and species limits in several groups have been difficult to establish. Because some of the forms of uncertain taxonomic status are currently threatened with extinction, a basic understanding of species limits is crucial not only for taxonomists but also for conservation biologists and managers. We analysed vocal variation to assess species limits in two Crypturellus species‐groups, the red‐legged complex (Crypturellus erythropus and allied forms) and the brown tinamou Crypturellus obsoletus. In the red‐legged complex, where several species‐level taxa have been recognized by some authors, there is no obvious geographic variation in vocalizations and populations appear mostly continuously distributed, with plumage variation largely explicable in terms of environmental conditions. In the brown group, a single species is recognized, but we found marked geographic variation in vocalizations and populations have disjunct distributions; we propose that at least one of the populations in this group likely merits recognition as a separate species. We conclude that incomplete knowledge of patterns of variation in relevant traits in addition to the momentum carried by traditional taxonomy may potentially mislead conservation actions.  相似文献   

5.
Aim We use parametric biogeographical reconstruction based on an extensive DNA sequence dataset to characterize the spatio‐temporal pattern of colonization of the Old World monarch flycatchers (Monarchidae). We then use this framework to examine the role of dispersal and colonization in their evolutionary diversification and to compare plumages between island and continental Terpsiphone species. Location Africa, Asia and the Indian Ocean. Methods We generate a DNA sequence dataset of 2300 bp comprising one nuclear and three mitochondrial markers for 89% (17/19) of the Old World Monarchidae species and 70% of the Terpsiphone subspecies. By applying maximum likelihood and Bayesian phylogenetic methods and implementing a Bayesian molecular clock to provide a temporal framework, we reveal the evolutionary history of the group. Furthermore, we employ both Lagrange and Bayes‐ Lagrange analyses to assess ancestral areas at each node of the phylogeny. By combining the ancestral area reconstruction with information on plumage traits we are able to compare patterns of plumage evolution on islands and continents. Results We provide the first comprehensive molecular phylogenetic reconstruction for the Old World Monarchidae. Our phylogenetic results reveal a relatively recent diversification associated with several dispersal events within this group. Moreover, ancestral area analyses reveal an Asian origin of the Indian Ocean and African clades. Ancestral state reconstruction analyses of plumage characters provide an interpretation of the plumage differentiation on islands and continents. Ancestral plumage traits are inferred to be close to those of the Asian paradise‐flycatcher (Terpsiphone paradisi), and island species display a high degree of plumage autapomorphy compared with continental species. Main conclusions Terpsiphone paradisi is polyphyletic and comprises populations that have retained the ancestral plumage of the widespread Terpsiphone genus. The genus appears to have colonized south‐west Asia, the Indian Ocean and Africa from eastern Asia. The phylogeny and divergence time estimates indicate multiple simultaneous colonizations of the western Old World by Terpsiphone. These results reinforce a hypothesis of range expansions of a Terpsiphone paradisi‐like ancestor into eastern Asia and the western Old World.  相似文献   

6.
Females of the closely related capuchino seedeaters are difficult to distinguish from one another based on human visual perception of colouration and morphology. We examined plumage colour differences among females of four species, the tawny‐bellied seedeater Sporophila hypoxantha, the dark‐throated seedeater S. ruficollis, the rufous‐rumped seedeater S. hypochroma, and the chesnut‐bellied seedeater S. cinnamomea. Reflectance values were measured on museum skins, and interspecific differences were analyzed using the Vorobyev‐Osorio avian colour discrimination model. Interspecific distances in the colour space calculated by the model were considerably higher than the threshold for colour discrimination, indicating the presence of colour differences among species that should be detectable by birds. Colour differences between S. hypoxantha and the other three species were the largest. A Discriminant Function Analysis showed that UV‐wavelength was particularly important in species separation. Our results indicate that female plumage of these four species is considerably divergent in colour; these differences being imperceptible to the human eye, thus representing previously unknown morphological evolution in these species.  相似文献   

7.
A multi‐locus approach was used to examine the DNA sequences of 10 nominal species of blackfly in the Simulium subgenus Gomphostilbia (Diptera: Simuliidae) in Malaysia. Molecular data were acquired from partial DNA sequences of the mitochondria‐encoded cytochrome c oxidase subunit I (COI), 12S rRNA and 16S rRNA genes, and the nuclear‐encoded 18S rRNA and 28S rRNA genes. No single gene, nor the concatenated gene set, resolved all species or all relationships. However, all morphologically established species were supported by at least one gene. The multi‐locus sequence analysis revealed two distinct evolutionary lineages, conforming to the morphotaxonomically recognized Simulium asakoae and Simulium ceylonicum species groups.  相似文献   

8.
Abstract. Phylogenetic relationships amongst Megastigmus species (Chalcidoidea: Torymidae) associated with conifer seeds were inferred from DNA sequence data. Twenty‐nine species of seed chalcids were analysed using two different genes, cytochrome b (mitochondrial DNA) and the D2 domain of the 28S ribosomal DNA. Maximum‐parsimony and maximum‐likelihood analyses showed that taxa formed two monophyletic groups, one clade comprising all species associated with Cupressaceae and Taxodiaceae hosts with the exception of Chamaecyparis, and the other clade composed of species associated with Pinaceae. Species infesting Cupressaceae and Taxodiaceae seemed to be specialized to particular host genera or even to be species specific, which was consistent with a taxonomic radiation following initial host adaptation. By contrast, Megastigmus species associated with Pinaceae appeared capable of shifting onto different congeneric species or even onto a new host genus, with their evolution apparently less constrained by plant association. We hypothesized that the Megastigmus group associated with Pinaceae may have a much higher invasive potential than that related to Cupressaceae. The study also confirmed the presence of invasive Nearctic species in the Palaearctic, and demonstrated the existence of a cryptic species complex.  相似文献   

9.
The three species in the genus Claravis (Aves: Peristerinae) are unique among members of the small New World ground‐dove clade. All three species inhabit forested areas rather than open scrubby habitat, and exhibit obvious sexual dichromatism. However, the phylogenetic relationships within Claravis remain unknown. The only molecular phylogenetic study to include more than one species of Claravis indicated the genus is paraphyletic. Here we include molecular data from all three Claravis species, including sequences from a museum skin of the previously unsampled Claravis geoffroyi (purple‐winged ground‐dove). Using both mitochondrial and nuclear loci, we estimate phylogenies and divergence times for the small New World ground‐dove clade. We also use ancestral state reconstruction methods to infer the evolution of male blue plumage (and thus sexual dimorphism) in the clade. As in the previous study we recover Claravis as a paraphyletic group, but with Claravis geoffroyi as the sister species to Claravis mondetoura (maroon‐chested ground‐dove). This result has important implications for the evolutionary history of the small New World ground‐dove clade. In particular, we recover multiple independent transitions between the monomorphic and dimorphic plumage states, which perhaps indicates sexual dimorphism arose twice in the group.  相似文献   

10.
Niche segregation between similar species will result from an avoidance of competition but also from environmental variability, including nowadays anthropogenic activities. Gulls are among the seabirds with greater behavioural plasticity, being highly opportunistic and feeding on a wide range of prey, mostly from anthropogenic origin. Here, we analysed blood and feather stable isotopes combined with pellet analysis to investigate niche partitioning between Audouin's gull Larus audouinii and yellow‐legged gull Larus michahellis breeding in sympatry at Deserta Island, southern Portugal, during 2014 and 2015. During the breeding season there was considerable overlap in the adults’ diet, as their stable isotope values of blood and primary feather (P1) did not differ, and their pellets were comprised mainly by marine fish species. However, Audouin's gulls presented higher occurrences of pelagic fish, while yellow‐legged gulls fed more on demersal fish, insects, and refuse. SIAR mixing models also estimated a higher proportion of demersal fish in the diet of yellow‐legged gulls. We also found differences between the two gull species in chicks’ feathers, suggesting that Audouin's gull adults selected prey with lower carbon isotope values to feed their young. Secondary feather (S8) of Audouin's gull presented higher isotope values compared to yellow‐legged gulls, indicating different foraging areas (δ13C) and/ or trophic levels (δ15N) between the two species in the non‐breeding season. During both the all‐year and non‐breeding periods the yellow‐legged gull showed a broader isotopic niche width than Audouin's gull in 2013, and in 2014 the two gull species exhibited different isotopic niche spaces. Our study suggests that both gull species foraged in association with fisheries during the breeding season. In this sense, a discard ban implemented under the new European Union Common Fisheries Policy may lead to a food shortage, therefore future research should closely monitor the population dynamics of Audouin's and yellow‐legged gulls.  相似文献   

11.

Background  

Based on extensive mitochondrial DNA (mtDNA) sequence data, we previously showed that the model of speciation among species of herring gull (Larus argentatus) complex was not that of a ring species, but most likely due more complex speciation scenario's. We also found that two species, herring gull and glaucous gull (L. hyperboreus) displayed an unexpected biphyletic distribution of their mtDNA haplotypes. It was evident that mtDNA sequence data alone were far from sufficient to obtain a more accurate and detailed insight into the demographic processes that underlie speciation of this complex, and that extensive autosomal genetic analysis was warranted.  相似文献   

12.
Hybridization and convergent evolution are phenomena of broad interest in evolutionary biology, but their occurrence poses challenges for reconstructing evolutionary affinities among affected taxa. Sticklebacks in the genus Pungitius are a case in point: evolutionary relationships and taxonomic validity of different species and populations in this circumpolarly distributed species complex remain contentious due to convergent evolution of traits regarded as diagnostic in their taxonomy, and possibly also due to frequent hybridization among taxa. To clarify the evolutionary relationships among different Pungitius species and populations globally, as well as to study the prevalence and extent of introgression among recognized species, genomic data sets of both reference genome‐anchored single nucleotide polymorphisms and de novo assembled RAD‐tag loci were constructed with RAD‐seq data. Both data sets yielded topologically identical and well‐supported species trees. Incongruence between nuclear and mitochondrial DNA‐based trees was found and suggested possibly frequent hybridization and mitogenome capture during the evolution of Pungitius sticklebacks. Further analyses revealed evidence for frequent nuclear genetic introgression among Pungitius species, although the estimated proportions of autosomal introgression were low. Apart from providing evidence for frequent hybridization, the results challenge earlier mitochondrial and morphology‐based hypotheses regarding the number of species and their affinities in this genus: at least seven extant species can be recognized on the basis of genetic data. The results also shed new light on the biogeographical history of the Pungitius‐complex, including suggestion of several trans‐Arctic invasions of Europe from the Northern Pacific. The well‐resolved phylogeny should facilitate the utility of this genus as a model system for future comparative evolutionary studies.  相似文献   

13.
Sex differences in behavior, morphology, and physiology are common in animals. In many bird species, differences in the feather colors of the sexes are apparent when judged by human observers and using physical measures of plumage reflectance, cryptic (to human) plumage dichromatism has also been detected in several additional avian lineages. However, it remains to be confirmed in almost all species whether sexual dichromatism is perceivable by individuals of the studied species. This latter step is essential because it allows the evaluation of alternative hypotheses regarding the signaling and communication functions of plumage variation. We applied perceptual modeling of the avian visual system for the first time to an endemic New Zealand bird to provide evidence of subtle but consistent sexual dichromatism in the whitehead, Mohoua albicilla. Molecular sexing techniques were also used in this species to confirm the extent of the sexual size dimorphism in plumage and body mass. Despite the small sample sizes, we now validate previous reports based on human perception that in male whiteheads head and chest feathers are physically brighter than in females. We further suggest that the extent of sexual plumage dichromatism is pronounced and can be perceived by these birds. In contrast, although sexual dimorphism was also detectable in the mass among the DNA‐sexed individuals, it was found to be less extensive than previously thought. Sexual size dimorphism and intraspecifically perceivable plumage dichromatism represent reliable traits that differ between female and male whiteheads. These traits, in turn, may contribute to honest communication displays within the complex social recognition systems of communally breeding whitehead and other group‐breeding taxa. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Sexual dichromatism in birds is often attributed to selection for elaboration in males. However, evolutionary changes in either sex can result in plumage differences between them, and such changes can result in either gains or losses of dimorphism. We reconstructed the evolution of plumage colors in both males and females of species in Maluridae, a family comprising the fairy‐wrens (Malurus, Clytomias, Sipodotus), emu‐wrens (Stipiturus), and grasswrens (Amytornis). Our results show that, across species, males and females differ in their patterns of color evolution. Male plumage has diverged at relatively steady rates, whereas female coloration has changed dramatically in some lineages and little in others. Accordingly, in comparisons against evolutionary models, plumage changes in males best fit a Brownian motion (BM) model, whereas plumage changes in females fit an Ornstein Uhlenbeck (OU) multioptimum model, with different adaptive peaks corresponding to distributions in either Australia or New Guinea. Levels of dichromatism were significantly associated with latitude, with greater dichromatism in more southerly taxa. Our results suggest that current patterns of plumage diversity in fairy‐wrens are a product of evolutionary changes in both sexes, driven in part by environmental differences across the distribution of the family.  相似文献   

15.
Natural selection typically constrains the evolution of sexually‐selected characters. The evolution of naturally‐ and sexually‐selected traits can be intertwined if they share part of their genetic machinery or if sex traits impair foraging success or increase the risk of depredation. The present study investigated phenotypic correlations between naturally‐ and sexually‐selected plumage traits in the Tytonidae (barn owls, grass owls, and masked owls). Phenotypic correlations indicate the extent to which selection on one trait will indirectly influence the evolution of another trait. In this group of birds, the ventral body side varies from white to dark reddish, a naturally‐selected pheomelanin‐based colour trait with important roles in predator–prey interactions. Owls also exhibit eumelanin‐based black spots, for which number and size signal different aspects of individual quality and are used in mate choice. These three plumage traits are strongly heritable and sexually dimorphic, with females being on average darker reddish and more spotted than males. Phenotypic correlations were measured between these three plumage traits in 3958 free‐living barn owls in Switzerland and 10 670 skin specimens from 34 Tyto taxa preserved in museums. Across Tyto taxa, the sexually‐selected plumage spottiness was positively correlated with the naturally‐selected reddish coloration, with redder birds being more heavily spotted. This suggests that they are genetically constrained or that natural and sexual selection are not antagonistically exerted on plumage traits. In a large sample of Swiss nestlings and within 34 Tyto taxa, the three plumage traits were positively correlated. The production of melanin pigments for one plumage trait is therefore not traded off against the production of melanin pigments for another plumage trait. Only in the most heavily‐spotted Tyto taxa do larger‐spotted individuals display fewer spots. This indicates that, at some threshold value, the evolution of many spots constrains the evolution of large spots. These analyses raise the possibility that different combinations of melanin‐based plumage traits may not be selectively equivalent.  相似文献   

16.
Müllerian mimetic systems have uncovered some of the dynamic processes by which natural selection can drive the radiation of convergent and divergent phenotypes. We examined evolution involving Müllerian mimicry in bumble bees by documenting the distribution and evolution of colour patterns amongst three colour‐polymorphic lineages –Bombus trifasciatus Smith, Bombus haemorrhoidalis Smith, and Bombus breviceps Smith – that mimic each other across ~14 colour groups in South‐East Asia. Using mitochondrial DNA sequence data, we estimated relationships within each lineage to infer the processes that gave rise to the colour diversity and develop hypotheses on species recognition. We expanded on our assessment of species delineation in the B. trifasciatus lineage using three nuclear gene fragments and morphometrics. Comparison of colour patterns amongst georeferenced specimens showed considerable variation in the degree and geographical range of mimicry amongst mimicry groups. Phylogenetic estimates show high rates of colour pattern evolution, with colour variation often exceeding variation within the fast‐evolving mitochondrial genes. The molecular data, and to some degree the morphometric data, support unique histories for several taxa recognized previously within the B. trifasciatus lineage, which may include several species. Early vicariant events within the B. trifasciatus lineage are likely to have occurred ~2.2 Mya in the mountains of south‐west China. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 805–826.  相似文献   

17.
The Northern Fulmar (Fulmarus glacialis) is a common tube‐nosed seabird with a disjunct Holarctic range. Taxonomic divisions within the Northern Fulmar have historically been muddled by geographical variation notably including highly polymorphic plumage. Recent molecular analyses (i.e., DNA barcoding) have suggested that genetic divergence between Atlantic and Pacific populations could be on par with those typically observed between species. We employ a multigene phylogenetic analysis to better explore the level of genetic divergence between these populations and to test an old hypothesis on the origin of the modern distribution of color morphs across their range. Additionally, we test whether mutations in the melanocortin‐1 receptor gene (MC1R) are associated with dark plumage in the Northern Fulmar. We confirmed that mitochondrial lineages in the Atlantic and Pacific populations are highly divergent, but nuclear markers revealed incomplete lineage sorting. Genetic divergence between these populations is consistent with that observed between many species of Procellariiformes and we recommend elevating these two forms to separate species. We also find that MC1R variation is not associated with color morph but rather is better explained by geographical divergence.  相似文献   

18.
Geographic variation in phenotypes plays a key role in fundamental evolutionary processes such as local adaptation, population differentiation and speciation, but the selective forces behind it are rarely known. We found support for the hypothesis that geographic variation in plumage traits of the pied flycatcher Ficedula hypoleuca is explained by character displacement with the collared flycatcher Ficedula albicollis in the contact zone. The plumage traits of the pied flycatcher differed strongly from the more conspicuous collared flycatcher in a sympatric area but increased in conspicuousness with increasing distance to there. Phenotypic differentiation (PST) was higher than that in neutral genetic markers (FST), and the effect of geographic distance remained when statistically controlling for neutral genetic differentiation. This suggests that a cline created by character displacement and gene flow explains phenotypic variation across the distribution of this species. The different plumage traits of the pied flycatcher are strongly to moderately correlated, indicating that they evolve non‐independently from each other. The flycatchers provide an example of plumage patterns diverging in two species that differ in several aspects of appearance. The divergence in sympatry and convergence in allopatry in these birds provide a possibility to study the evolutionary mechanisms behind the highly divergent avian plumage patterns.  相似文献   

19.
The Shiny Cowbird Molothrus bonariensis is a sexually dichromatic species, in which males have blackish‐blue iridescence and females are dull brown. However, in some subtropical parts of its distribution, females show a plumage polymorphism that ranges from dull brown to dark brown and even black. Plumage melanization has been shown to protect feathers from bacterial degradation, decreasing the effects of harmful bacterial activity and thus plumage damage. In this study, we assessed whether bacterial feather‐degrading activity is acting as the selective force to increase darkness in the plumage of the female Shiny Cowbirds in Argentina. We compared the degradation of female Shiny Cowbird feathers belonging to different colour morphs when exposed to bacterial strains isolated from subtropical and temperate zones of its distribution, as well as to Bacillus licheniformis. We did not find differences in susceptibility to bacterial degradation between brown feathers and darker feathers. These results suggest that female plumage polymorphism in Shiny Cowbirds has not arisen as a defence against bacterial feather‐degrading activity.  相似文献   

20.

Background  

The MC1R (melanocortin-1 receptor) locus underlies intraspecific variation in melanin-based dark plumage coloration in several unrelated birds with plumage polymorphisms. There is far less evidence for functional variants of MC1R being involved in interspecific variation, in which spurious genotype-phenotype associations arising through population history are a far greater problem than in intraspecific studies. We investigated the relationship between MC1R variation and plumage coloration in swans (Cygnus), which show extreme variation in melanic plumage phenotypes among species (white to black).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号