首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Aim

Emerging aquatic insects link aquatic and terrestrial ecosystems across the Earth. Their diversity, abundance and functional importance means their emergence is an important phenological event. Nevertheless, aquatic insect emergence is understudied at a global scale compared to other phenological events, despite changing phenology being one of the most significant ecological responses to climate change. Here, we quantitatively describe the global patterns, and key proposed drivers, of seasonal aquatic insect emergence, to further understand how these patterns might change in the future.

Location

Global.

Time Period

1950–2018.

Major Taxa Studied

Emerging aquatic insects.

Methods

We extracted monthly emergence data from 86 studies across 163 sites to construct 1053 annual emergence curves. We parameterized the curves using two complementary metrics of seasonality, which were modelled against geographical and climatic variables to determine the direct and indirect relationships between them.

Results

We found clear global trends in aquatic insect emergence patterns across latitude and underlying climates. Between-month variation and temporal restriction of emergence increased from the equator to the poles, going from small, aseasonal fluctuations in the warm, thermally stable tropics to large, seasonal peaks at cooler, thermally unstable higher latitudes. While emergence trends were associated with gradients of precipitation, temperature was the dominant climatic driver of the latitudinal trend.

Main Conclusions

These findings suggest that with climate warming, aquatic insects will emerge over longer periods, diluted in abundances and displaying less seasonal emergence patterns with smaller between-month fluctuations. This may result in disruption of ecosystem functions seasonally dependent on aquatic insects, such as riparian predation, pollination and disease transmission. The cross-ecosystem life cycle of aquatic insects means changes to their seasonal patterns of emergence will have impacts in both aquatic and terrestrial ecosystems.  相似文献   

3.
Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse‐scar bogs, low shrub/scrub, and forests growing on elevated ice‐rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half‐century, and much of these carbon‐rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape‐level losses of forest area due to thermokarst from 1949 to 2009. Over the 60‐year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape‐level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice‐rich permafrost ecosystems to climate changes depend on forest type.  相似文献   

4.
Rapid warming and changes in water availability at high latitudes alter resource abundance, tree competition, and disturbance regimes. While these changes are expected to disrupt the functioning of boreal forests, their ultimate implications for forest composition are uncertain. In particular, recent site‐level studies of the Alaskan boreal forest have reported both increases and decreases in productivity over the past few decades. Here, we test the idea that variations in Alaskan forest growth and mortality rates are contingent on species composition. Using forest inventory measurements and climate data from plots located throughout interior and south‐central Alaska, we show significant growth and mortality responses associated with competition, midsummer vapor pressure deficit, and increased growing season length. The governing climate and competition processes differed substantially across species. Surprisingly, the most dramatic climate response occurred in the drought tolerant angiosperm species, trembling aspen, and linked high midsummer vapor pressure deficits to decreased growth and increased insect‐related mortality. Given that species composition in the Alaskan and western Canadian boreal forests is projected to shift toward early‐successional angiosperm species due to fire regime, these results underscore the potential for a reduction in boreal productivity stemming from increases in midsummer evaporative demand.  相似文献   

5.
6.
Dramatic change in local climate patterns in the Amboseli basin, Kenya   总被引:6,自引:0,他引:6  
The Amboseli basin, a semi‐arid, open savannah area of southern Kenya, has experienced extensive changes in habitat since the early 1960's. The present report documents patterns of air temperature and rainfall in Amboseli for the 25‐year period beginning 1976. Daily temperatures increased dramatically throughout this time period, at a rate almost an order of magnitude greater than that attributed to global warming. Mean daily maximum temperature increased more than did daily minimum (0.275 vs. 0.071°C per annum). Although increases in mean daily maxima were documented for all months of the year, they were greatest during the hottest months, February and March. Annual rainfall varied more than four‐fold (x = 346.5 mm, SD = 120.0, range 132.0–553.4 mm), yet did not exhibit any directional or other regular pattern of variability among years over this same 25‐year period. Empirical as well as theoretical investigation of relations between such changes in climatic conditions and habitat characteristics are needed at local and regional as well as global scales.  相似文献   

7.
Global climate change is impacting and will continue to impact marine and estuarine fish and fisheries. Data trends show global climate change effects ranging from increased oxygen consumption rates in fishes, to changes in foraging and migrational patterns in polar seas, to fish community changes in bleached tropical coral reefs. Projections of future conditions portend further impacts on the distribution and abundance of fishes associated with relatively small temperature changes. Changing fish distributions and abundances will undoubtedly affect communities of humans who harvest these stocks. Coastal-based harvesters (subsistence, commercial, recreational) may be impacted (negatively or positively) by changes in fish stocks due to climate change. Furthermore, marine protected area boundaries, low-lying island countries dependent on coastal economies, and disease incidence (in aquatic organisms and humans) are also affected by a relatively small increase in temperature and sea level. Our interpretations of evidence include many uncertainties about the future of affected fish species and their harvesters. Therefore, there is a need to research the physiology and ecology of marine and estuarine fishes, particularly in the tropics where comparatively little research has been conducted. As a broader and deeper information base accumulates, researchers will be able to make more accurate predictions and forge relevant solutions.  相似文献   

8.
The past relationship between global temperature and levels of biological diversity is of increasing concern due to anthropogenic climate warming. However, no consistent link between these variables has yet been demonstrated. We analysed the fossil record for the last 520 Myr against estimates of low latitude sea surface temperature for the same period. We found that global biodiversity (the richness of families and genera) is related to temperature and has been relatively low during warm 'greenhouse' phases, while during the same phases extinction and origination rates of taxonomic lineages have been relatively high. These findings are consistent for terrestrial and marine environments and are robust to a number of alternative assumptions and potential biases. Our results provide the first clear evidence that global climate may explain substantial variation in the fossil record in a simple and consistent manner. Our findings may have implications for extinction and biodiversity change under future climate warming.  相似文献   

9.
10.
We investigated the thermal ecology of three Alaskan streams. Monument Creek (MC) and Little Poker Creek (LPC) are subarctic streams in interior Alaska; LPC is in a permafrost-dominated valley. Imnavait Creek (IC) is an arctic tundra beaded stream in the northern foothills of the Brooks Range. Water temperatures were recorded with automated dataloggers hourly (LPC) or bi-hourly (MC and IC). Records for MC extend through almost three entire years, while data from IC (three years) and LPC (one year) represent the majority of the ice-free season. We also collected winter water/ice temperatures from IC (1989–1990). Mean annual water temperatures were 1.1 °C (LPC), 2.3 °C (MC), and 2.9 °C (IC), while maxima were 5.8 °C (LPC), 13.0 °C (MC), and 21.4 °C (IC). Water temperature rose in the spring about twice as fast (both mean and maximum daily increase) in MC as in LPC, and again about twice as fast in IC as in MC. A similar pattern was observed during the autumnal decline in water temperature. Maximum daily amplitude followed a similar pattern, with MC (6.6 °C) intermediate between LPC (4.1°) and IC (11.6°). LPC accumulated approximately 400 degree-days above 0 °C, MC approximately 950 degree-days, and IC approximately 1000 degree-days. Although it is about 450 km north of the other streams, the tundra stream (IC) accumulated more degree-days, had higher maximum and mean temperatures, greater daily temperature amplitude, and steeper slopes of vernal temperature rise and autumnal temperature decline than the subarctic streams (LPC and MC). The absence of a canopy of riparian plants, channel morphology, and continuous sunlight during the arctic mid-summer accounted for these higher temperatures. Beaded tundra streams provide a highly seasonal (< 120 d ice-free) and spatially and temporally complex thermal environment.  相似文献   

11.
余明  刘效东  薛立 《生态科学》2021,40(2):204-209
森林生物量分配策略是全球变化背景下群落保持生产力的重要机制.温度和降水会影响森林生物量的分配格局.文章基于文献分析,总结了增温、低温和降水对森林地上、地下生物量分配的影响机制,以及温度和降水对森林生物量分配的交互作用,并对未来温度和降水影响森林生物量分配的研究进行了展望,提出该领域今后的研究重点为:(1)加强生物量分配...  相似文献   

12.
Humans are increasingly influencing global climate and regional predator assemblages, yet a mechanistic understanding of how climate and predation interact to affect fluctuations in prey populations is currently lacking. Here we develop a modelling framework to explore the effects of different predation strategies on the response of age-structured prey populations to a changing climate. We show that predation acts in opposition to temporal correlation in climatic conditions to suppress prey population fluctuations. Ambush predators such as lions are shown to be more effective at suppressing fluctuations in their prey than cursorial predators such as wolves, which chase down prey over long distances, because they are more effective predators on prime-aged adults. We model climate as a Markov process and explore the consequences of future changes in climatic autocorrelation for population dynamics. We show that the presence of healthy predator populations will be particularly important in dampening prey population fluctuations if temporal correlation in climatic conditions increases in the future.  相似文献   

13.
African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.  相似文献   

14.
Stream ecosystems are especially vulnerable to climate warming because most aquatic organisms are ectothermic and live in dendritic networks that are easily fragmented. Many bioclimatic models predict significant range contractions in stream biotas, but subsequent biological assessments have rarely been done to determine the accuracy of these predictions. Assessments are difficult because model predictions are either untestable or so imprecise that definitive answers may not be obtained within timespans relevant for effective conservation. Here, we develop the equations for calculating isotherm shift rates (ISRs) in streams that can be used to represent historic or future warming scenarios and be calibrated to individual streams using local measurements of stream temperature and slope. A set of reference equations and formulas are provided for application to most streams. Example calculations for streams with lapse rates of 0.8 °C/100 m and long‐term warming rates of 0.1–0.2 °C decade?1 indicate that isotherms shift upstream at 0.13–1.3 km decade?1 in steep streams (2–10% slope) and 1.3–25 km decade?1 in flat streams (0.1–1% slope). Used more generally with global scenarios, the equations predict isotherms shifted 1.5–43 km in many streams during the 20th Century as air temperatures increased by 0.6 °C and would shift another 5–143 km in the first half of the 21st Century if midrange projections of a 2 °C air temperature increase occur. Variability analysis suggests that short‐term variation associated with interannual stream temperature changes will mask long‐term isotherm shifts for several decades in most locations, so extended biological monitoring efforts are required to document anticipated distribution shifts. Resampling of historical sites could yield estimates of biological responses in the short term and should be prioritized to validate bioclimatic models and develop a better understanding about the effects of temperature increases on stream biotas.  相似文献   

15.
Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three‐dimensional hydrology model, we simulated coho smolt production over a 20‐year span at the end of the century (2080–2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg‐to‐fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate‐change‐related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat.  相似文献   

16.
气候变化对中国农作物虫害发生的影响   总被引:4,自引:0,他引:4  
张蕾  霍治国  王丽  姜玉英 《生态学杂志》2012,31(6):1499-1507
基于1961—2010年全国农区527个气象站点气象资料、全国病虫害资料以及农作物种植面积等资料,对全国虫害发生面积与气象因子采用相关分析法,分析了气象要素变化对虫害发生的影响。结果表明:气候变化背景下,年平均温度、平均降水强度分别以0.27℃.10a-1、0.24mm.(d.10a)-1的速度增长,年日照时数以47.40h.10a-1的速度减小;年降水量增长速率为0.14mm.10a-1,但波动较大;虫害发生面积率距平与平均温度、平均降水强度距平呈显著正相关,平均温度、平均降水强度分别每增加1℃、1mm.d-1,虫害发生面积率增加0.648、0.713,虫害发生面积将增加0.96、1.06亿hm2次;虫害发生面积率距平与年日照时数距平呈显著负相关,其每降低100h,虫害发生面积率增加0.40,虫害发生面积将增加0.59亿hm2次;总体上,虫害发生面积率距平与年降水量距平的关系不明显。虫害发生面积率距平与年平均小雨量、微雨量雨日数、小雨量雨日数距平呈显著负相关,3个因子分别每减少1mm、1d、1d,虫害发生面积率增加0.014、0.066、0.052,发生面积将增加0.02、0.10、0.08亿hm2次。  相似文献   

17.
羊草物候特征对气候因子的响应   总被引:21,自引:5,他引:16  
研究了内蒙古高原典型草原优势植物羊草的物候特征及其对气候因子的响应,结果表明,3~4月的平均温度与羊草的展叶显著相关,温度每升高1℃,羊草展叶提前4.35d;日照时数与羊草枯黄期显著相关,随着日照时数增加,羊草展叶期推后,枯黄期提前;4~10月平均风速与羊草生长季长相关,平均风速越大,生长期越长。  相似文献   

18.
Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long‐term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences.  相似文献   

19.
Aim This study makes quantitative global estimates of land suitability for cultivation based on climate and soil constraints. It evaluates further the sensitivity of croplands to any possible changes in climate and atmospheric CO2 concentrations. Location The location is global, geographically explicit. Methods The methods used are spatial data synthesis and analysis and numerical modelling. Results There is a cropland ‘reserve’ of 120%, mainly in tropical South America and Africa. Our climate sensitivity analysis indicates that the southern provinces of Canada, north‐western and north‐central states of the United States, northern Europe, southern Former Soviet Union and the Manchurian plains of China are most sensitive to changes in temperature. The Great Plains region of the United States and north‐eastern China are most sensitive to changes in precipitation. The regions that are sensitive to precipitation change are also sensitive to changes in CO2, but the magnitude is small compared to the influence of direct climate change. We estimate that climate change, as simulated by global climate models, will expand cropland suitability by an additional 16%, mainly in the Northern Hemisphere high latitudes. However, the tropics (mainly Africa, northern South America, Mexico and Central America and Oceania) will experience a small decrease in suitability due to climate change. Main conclusions There is a large reserve of cultivable croplands, mainly in tropical South America and Africa. However, much of this land is under valuable forests or in protected areas. Furthermore, the tropical soils could potentially lose fertility very rapidly once the forest cover is removed. Regions that lie at the margins of temperature or precipitation limitation to cultivation are most sensitive to changes in climate and atmospheric CO2 concentration. It is anticipated that climate change will result in an increase in cropland suitability in the Northern Hemisphere high latitudes (mainly in developed nations), while the tropics will lose suitability (mainly in developing nations).  相似文献   

20.
The Dartford Warbler Sylvia undata has recently expanded its range northwards and upwards in the UK, consistent with the hypothesis that this cold‐sensitive species has responded to a warming climate. We interrogated distribution data, collected during four national surveys of this species between 1974 and 2006, to assess whether this large‐scale range expansion has been accompanied by finer‐scale changes in topographic characteristics of breeding locations. Within sites occupied in successive surveys, there was some evidence of limited altitudinal expansion between surveys. Within wider landscapes occupied in successive surveys, the preceding winter climate tended to be harsher at newly colonized sites than at sites that had already been occupied in the previous survey, while territories in newly colonized sites also tended to be on steeper slopes, especially if at higher altitude, and (in 1994 only) to be more south‐facing. Territories in sites that had already been occupied in the previous survey tended to be lower altitude, less steep and more north‐facing than territories in newly colonized landscapes. In 2006 only, the winter climate was significantly milder in newly colonized landscapes than in already occupied sites. The combined effects of a changing climate and topography may have influenced the pattern of in‐filling in the existing range, while colonization of distant areas, especially more latterly, may have been facilitated by a combination of increased dispersal pressure from the existing range and warming of climate which made higher altitude habitat in the new areas more suitable for occupancy. Careful consideration needs to be given to the importance of fine‐scale topographical variation in determining species’ responses to climate change in order to underpin robust adaptation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号