首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ensuring the persistence of populations of endangered species requires an understanding of, and response to, the causes of population declines. Species occurring in small populations are vulnerable to stochastic problems that are environmental, demographic, or genetic in nature and can reduce survival as much as the deterministic threats of habitat degradation. Critically endangered black rhinoceros (Diceros bicornis) populations declined throughout Africa since 1960, with numbers steadily increasing at a continental level, but remaining lower than three generations ago. However, size, demographics, trends, and factors affecting these, are poorly known. We used 18 years (1990–2008) of long‐term sightings data from Ithala Game Reserve, KwaZulu‐Natal, South Africa, to determine population estimates, growth rate and fecundity over time, as well as sex and age structure and age‐specific probabilities of survival. Calf survivorship between the ages of 0 and 1 year was 74% for females and 94% for males. Age‐specific survivorship for both sexes was significantly higher from yearling to subadult age‐classes (1–6 years) than for adults (7–30 years). The most frequent cause of mortality was attributed to unknown causes while fighting injuries was recorded as the second most common cause of mortality, particularly among subadult and adult males. There was no significant difference in the sex ratios at birth, although the proportion of females in the population was 0.58. There was strong evidence for density‐dependent regulation, with density in conception year a key driver of population performance (birth rate). The population does not appear to be at ecological carrying capacity; however, social effects are delaying conception. To mitigate density‐dependent social effects, we recommend an adaptive management strategy of pre‐selecting individuals for removal from the reserve, so as to maintain stability in the social organization of the population.  相似文献   

2.
Altered temperatures affect insects’ life history traits, such as development period and fecundity, which ultimately determine population growth rates. Understanding insects’ thermal biology is therefore integral to population forecasting and pest management decision‐making such as when to utilise crop spraying or biological control. Aphids are important crop pests in temperate regions, causing considerable yield losses. The aphid thermal‐biology literature is, however, heavily biased towards the effects of rising mean temperatures, whereas the effects of fluctuating, extreme climatic events (e.g., heat waves and sub‐zero cold periods) are largely overlooked. This study assessed the effects of laboratory‐simulated heat waves and sub‐zero cold periods on the survival, development period, and fecundity of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae: Microsiphini), in addition to assessing maternal effects on the birth weight and development period of the offspring of exposed individuals. Exposure to heat stress periods (total of 16 h at 30 °C) significantly reduced aphid fecundity and increased physiological development period (in day‐degrees) resulting in a reduced population growth rate. Cold exposure (total of 1.33 h at ?15 °C) reduced population growth rate due to an elongated development period (in days), but did not affect fecundity or physiological development period (in day‐degrees). Both cold and heat stress significantly reduced aphid survival. Maternal experience of heat stress reduced nymphal birth weight although nymphal development period was not affected by either cold or heat stress. The results suggest that including the effects of fluctuating, extreme temperature events on aphid life history in population forecast models is likely to be of great importance to pest management decision‐making. The demonstration of maternal effects on birth weight also suggests that cross‐generational effects of heat waves on population growth rates could occur.  相似文献   

3.
The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.  相似文献   

4.
Unravelling the contributions of density‐dependent and density‐independent factors in determining species population dynamics is a challenge, especially if the two factors interact. One approach is to apply stochastic population models to long‐term data, yet few studies have included interactions between density‐dependent and density‐independent factors, or explored more than one type of stochastic population model. However, both are important because model choice critically affects inference on population dynamics and stability. Here, we used a multiple models approach and applied log‐linear and non‐linear stochastic population models to time series (spanning 29 years) on the population growth rates of Blue Tits Cyanistes caeruleus, Great Tits Parus major and Pied Flycatchers Ficedula hypoleuca breeding in two nestbox populations in southern Germany. We focused on the roles of climate conditions and intra‐ and interspecific competition in determining population growth rates. Density dependence was evident in all populations. For Blue Tits in one population and for Great Tits in both populations, addition of a density‐independent factor improved model fit. At one location, Blue Tit population growth rate increased following warmer winters, whereas Great Tit population growth rates decreased following warmer springs. Importantly, Great Tit population growth rate also decreased following years of high Blue Tit abundance, but not vice versa. This finding is consistent with asymmetric interspecific competition and implies that competition could carry over to influence population dynamics. At the other location, Great Tit population growth rate decreased following years of high Pied Flycatcher abundance but only when Great Tit population numbers were low, illustrating that the roles of density‐dependent and density‐independent factors are not necessarily mutually exclusive. The dynamics of this Great Tit population, in contrast to the other populations, were unstable and chaotic, raising the question of whether interactions between density‐dependent and density‐independent factors play a role in determining the (in) stability of the dynamics of species populations.  相似文献   

5.
We estimated the risk that the Steller sea lion will be extirpated in western Alaska using a population viability analysis (PVA) that combined simulations with statistically fitted models of historical population dynamics. Our analysis considered the roles that density‐dependent and density‐independent factors may have played in the past, and how they might influence future population dynamics. It also established functional relationships between population size, population growth rate and the risk of extinction under alternative hypotheses about population regulation and environmental variability. These functional relationships can be used to develop recovery criteria and guide research and management decisions. Life table parameters (e.g., birth and survival rates) operating during the population decline (1978–2002) were estimated by fitting simple age‐structured models to time‐series of pup and non‐pup counts from 33 rookeries (subpopulations). The PVA was carried out by projecting all 33 subpopulations into the future using these estimated site‐specific life tables (with associated uncertainties) and different assumptions about carrying capacities and the presence or absence of density‐dependent population regulation. Results suggest that the overall predicted risk of extirpation of Steller sea lions as a species in western Alaska was low in the next 100 yr under all scenarios explored. However, most subpopulations of Steller sea lions had high probabilities of going extinct within the next 100 yr if trends observed during the 1990s were to continue. Two clusters of contiguous subpopulations occurring in the Unimak Pass area in the western Gulf of Alaska/eastern Aleutian Islands and the Seguam–Adak region in the central Aleutian Islands had relatively lower risks of extinction. Risks of extinction for a number of subpopulations in the Gulf of Alaska were reduced if the increases observed since the late 1990s continue into the future. The risks of subpopulations going extinct were small when density‐dependent compensation in birth and survival rates was assumed, even when random stochasticity in these vital rates was introduced.  相似文献   

6.
Chris T. Bauch 《Oikos》2008,117(12):1824-1832
In modern industrialized countries, human birth rates have been declining persistently for decades. In many cases they have now fallen below the replacement threshold. However, unlike in natural populations where population growth is constrained by limited resources, birth rates in modern industrialized countries are negatively correlated with resource availability. Here, declining birth rates in human populations are shown to be a manifestation of density‐dependent population growth brought on by socioeconomic development. This is demonstrated by combining empirical power law relations between population size, gross domestic product (GDP) per capita, and fertility in a simple theoretical model describing population dynamics in developed countries. For a closed population, the model exhibits growth to a globally stable equilibrium population size, for both national and city populations. A version of the model that is open with respect to immigration and the influence of foreign technology and capital exhibits a good fit to long‐term time series data on population size, GDP per capita, and birth rates for the United States, France and Japan.  相似文献   

7.
Re‐introduced African elephant (Loxodonta africana Blumenbach) populations are growing at very high rates in many of southern Africa’s reserves, have attained densities higher than previously thought possible and may be exhibiting irruptive growth. Active management of such populations is necessary to prevent the potentially negative effects on habitat and biodiversity that are associated with elephant overpopulation. One potentially feasible method of elephant management is immunocontraception, but very little is known about the long‐term effectiveness of this method. Using demographic data from three South African elephant populations, we made model projections of the effects of contraception on population growth rates to determine whether contraception may be a feasible management tool for elephant. In comparison with noncontracepted populations, realistic reductions in population growth rate after 20 years of contraception were projected to be up to c. 64%, with 50% being a very feasible target. Through its ability to reduce population growth rates, immunocontraception should be an effective tool for preventing or minimizing irruption in elephants and, perhaps, other introduced ungulate species.  相似文献   

8.
Linking dispersal to population growth remains a challenging task and is a major knowledge gap, for example, for conservation management. We studied relative roles of different demographic rates behind population growth in Siberian flying squirrels in two nest‐box breeding populations in western Finland. Adults and offspring were captured and individually identifiable. We constructed an integrated population model, which estimated all relevant annual demographic rates (birth, local [apparent] survival, and immigration) as well as population growth rates. One population (studied 2002–2014) fluctuated around a steady‐state equilibrium, whereas the other (studied 1995–2014) showed a numerical decline. Immigration was the demographic rate which showed clear correlations to annual population growth rates in both populations. Population growth rate was density dependent in both populations. None of the demographic rates nor the population growth rate correlated across the two study populations, despite their proximity suggesting that factors regulating the dynamics are determined locally. We conclude that flying squirrels may persist in a network of uncoupled subpopulations, where movement between subpopulations is of critical importance. Our study supports the view that dispersal has the key role in population survival of a small forest rodent.  相似文献   

9.
Wildlife agencies typically attempt to manage carnivore numbers in localized game management units through hunting, and do not always consider the potential influences of immigration and emigration on the outcome of those hunting practices. However, such a closed population structure may not be an appropriate model for management of carnivore populations where immigration and emigration are important population parameters. The closed population hypothesis predicts that high hunting mortality will reduce numbers and densities of carnivores and that low hunting mortality will increase numbers and densities. By contrast, the open population hypothesis predicts that high hunting mortality may not reduce carnivore densities because of compensatory immigration, and low hunting mortality may not result in more carnivores because of compensatory emigration. Previous research supported the open population hypothesis with high immigration rates in a heavily hunted (hunting mortality rate=0.24) cougar population in northern Washington. We test the open population hypothesis and high emigration rates in a lightly hunted (hunting mortality rate=0.11) cougar population in central Washington by monitoring demography from 2002 to 2007. We used a dual sex survival/fecundity Leslie matrix to estimate closed population growth and annual census counts to estimate open population growth. The observed open population growth rate of 0.98 was lower than the closed survival/fecundity growth rates of 1.13 (deterministic) and 1.10 (stochastic), and suggests a 12–15% annual emigration rate. Our data support the open population hypothesis for lightly hunted populations of carnivores. Low hunting mortality did not result in increased numbers and densities of cougars, as commonly believed because of compensatory emigration.  相似文献   

10.
Few studies have quantified the dynamics of recovering populations of large raptors using long‐term, spatially explicit studies. Using data collected over 37 years in the western Italian Alps, we assessed the trends in distribution, abundance, fecundity and breeding population structure of Golden Eagles Aquila chrysaetos. Using the spatial distribution of territory centroids in 2007, we found that the spatial distribution of eagle territories was over‐dispersed up to 3 km. Although population size and total productivity increased from 1972 to 2008, the proportion of pairs that laid eggs showed a strong decline, falling to no more than 50% after 2003. On average, 15% of successful nests produced two fledglings, and productivity also declined over time. No significant relationship between population growth rate and total population size was detected, but the percentage of pairs that bred and breeding success showed evidence of density dependence, as they declined significantly with increasing density. Our results suggest that density dependence, operating across heterogeneous habitats, is currently regulating this population, while the carrying capacity may still be increasing. This may explain the apparent paradox of reduced breeding effort despite increasing total productivity.  相似文献   

11.
One of the methods for determining the duration of postembryonic development is the calculation method suggested by Gras and Saint-Jean (1978) for populations with continuous reproduction and stable age distribution. After inserting time-weighted means for instantaneous birth rates into the formula, it is possible to calculate the growth rates of the juveniles during each interval between obersvations for a non-stationary population. Estimated values were in a good agreement with those obtained from computer-constructed populations and determined directly from a natural cladoceran population. The duration of postembryonic development in cladoceran populations increases significantly during periods of food depletion caused by filtering activity of herbivorous zooplankton. This physiological response together with the decrease in age-specific fecundity permits effective regulation of population abundance through the birth rate.  相似文献   

12.
Some behaviours that typically increase fitness at the individual level may reduce population persistence, particularly in the face of environmental changes. Sexual cannibalism is an extreme mating behaviour which typically involves a male being devoured by the female immediately before, during or after copulation, and is widespread amongst predatory invertebrates. Although the individual‐level effects of sexual cannibalism are reasonably well understood, very little is known about the population‐level effects. We constructed both a mathematical model and an individual‐based model to predict how sexual cannibalism might affect population growth rate and extinction risk. We found that in the absence of any cannibalism‐derived fecundity benefit, sexual cannibalism is always detrimental to population growth rate and leads to a higher population extinction risk. Increasing the fecundity benefits of sexual cannibalism leads to a consistently higher population growth rate and likely a lower extinction risk. However, even if cannibalism‐derived fecundity benefits are large, very high rates of sexual cannibalism (>70%) can still drive the population to negative growth and potential extinction. Pre‐copulatory cannibalism was particularly damaging for population growth rates and was the main predictor of growth declining below the replacement rate. Surprisingly, post‐copulatory cannibalism had a largely positive effect on population growth rate when fecundity benefits were present. This study is the first to formally estimate the population‐level effects of sexual cannibalism. We highlight the detrimental effect sexual cannibalism may have on population viability if (1) cannibalism rates become high, and/or (2) cannibalism‐derived fecundity benefits become low. Decreased food availability could plausibly both increase the frequency of cannibalism, and reduce the fecundity benefit of cannibalism, suggesting that sexual cannibalism may increase the risk of population collapse in the face of environmental change.  相似文献   

13.
1. Understanding how density-dependent and independent processes influence demographic parameters, and hence regulate population size, is fundamental within population ecology. We investigated density dependence in growth rate and fecundity in a recovering population of a semicolonial raptor, the osprey Pandion haliaetus [Linnaeus, 1758], using 31 years of count and demographic data in Corsica. 2. The study population increased from three pairs in 1974 to an average of 22 pairs in the late 1990s, with two distinct phases during the recovery (increase followed by stability) and contrasted trends in breeding parameters in each phase. 3. We show density dependence in population growth rate in the second phase, indicating that the stabilized population was regulated. We also show density dependence in productivity (fledging success between years and hatching success within years). 4. Using long-term data on behavioural interactions at nest sites, and on diet and fish provisioning rate, we evaluated two possible mechanisms of density dependence in productivity, food depletion and behavioural interference. 5. As density increased, both provisioning rate and the size of prey increased, contrary to predictions of a food-depletion mechanism. In the time series, a reduction in fledging success coincided with an increase in the number of non-breeders. Hatching success decreased with increasing local density and frequency of interactions with conspecifics, suggesting that behavioural interference was influencing hatching success. 6. Our study shows that, taking into account the role of non-breeders, in particular in species or populations where there are many floaters and where competition for nest sites is intense, can improve our understanding of density-dependent processes and help conservation actions.  相似文献   

14.
Using long‐term mark–resighting data acquired over 27 years in continental France, we estimated demographic parameters and modelled the dynamics of a newly established population of Ospreys Pandion haliaetus using a life‐history model. We then performed prospective and retrospective analyses to estimate the sensitivity of the population growth rate to demographic parameters, and to quantify their contribution to the observed variation in abundance. The observed population growth rate was estimated at 1.150 (from one to 38 pairs in the period 1985–2011), and the stochastic population growth rate was estimated at 1.156. The number of fledglings per nest made the largest contribution to the variance of the observed population growth rate. Breeding productivity was stable across years. In contrast, the prospective analysis indicated that the sensitivity of the population growth rate was greatest for immigration and adult survival. Our results suggest that the increase of a new and recently established breeding population of Ospreys was mainly driven by local dynamics (high productivity and high proportion of breeding individuals), with no sign of density‐dependence except for juvenile survival. This probably reflects highly favourable conditions for breeding. Our results show that productivity can be a major driver in recovering raptor populations, and conservation work should aim to protect occupied nest‐sites and their surrounding habitat and to maintain highly favourable foraging areas in the vicinity of breeding sites.  相似文献   

15.
1. Density‐dependent growth has been widely reported in freshwater fishes, but the ontogenetic evolution of competition and its subsequent effects on growth through a life span remains unclear. 2. Patterns of competition can be described by integrating population abundance data with habitat‐modelling results. Weighted usable area (WUA; m2 WUA ha?1) curves are obtained for each flow value and are then coupled with demographic data to obtain the occupancy rates (trout m?2 WUA, the density of a given age class related to its suitable habitat) of the WUA for every age class, year and site. 3. We examined a long‐term data series searching for temporal variation in the influence of habitat occupancy rate on the growth of brown trout Salmo trutta. We tested whether (i) mean cohort mass (mean mass of the cohort during the first 3 years of life) is affected by the occupancy rate experienced across a life span; and (ii) the occupancy rate experienced at different ages influenced mean body size. 4. We observed a consistent negative power relationship between average cohort mass and mean occupancy rate through a life span, indicating that stronger cohorts were related to a reduced growth, with likely consequences for individual fitness. 5. The effects of occupancy rate on size‐at‐age were mainly detected in the size attained at the second year of life, but they were because of the competition at different times. Thus, the level of competition varied through ontogeny, in some of the rivers affecting growth since the first year of life, whereas in most of the rivers the main effects on body size resulted from the competition during the second year of life. 6. Occupancy rate appears more appropriate than density for assessing the occurrence of habitat competition in freshwater fishes, since it encompasses the differences in quantity and quality of suitable habitat for each age class. 7. Our study highlights the importance of density‐dependent growth as a key process in the dynamics of brown trout populations, its temporal variation depending on the temporal changes of density and the variation of competition associated with the habitat capacity for each life stage.  相似文献   

16.
Population analysis in mass cultures of Tubifex tubifex   总被引:1,自引:0,他引:1  
Mass cultures of Tubifex tubifex from Lake Orta were kept in the lab at 20 °C starting with different initial densities (10, 45, 86, 161 ind · jar–1), with the aim of evaluating the effect of density on population numbers and on population parameters. The results show that density mainly controls fecundity, growth, maturation and ovigeration rates. Growth rates and mean number of eggs laid/ovigerous (R0) are inversely related to density, but generation time appears to be directly related. Very low or very high initial densities display, at different times of the culture history, efficient density controls. Intermediate N0 seem to bring about situations of bad control, easily leading to numerical overshoots. A possible implementation of a population dynamics model (Bonomi & Di Cola, 1980), originally used for laboratory observations on T. tubifex cohorts was considered, including some density control functions derived from our observations on cohort and mass cultures in some transfer rates and in fecundity rate.  相似文献   

17.
Abstract. Tiller demography of Carex aquatilis ssp. stans, Carex membranacea, and Eriophorum angustifolium ssp. triste was investigated in ungrazed and grazed high arctic vegetation on central Ellesmere Island, Canada. Tiller birth, growth, flowering and death were studied from excavated clonal fragments, and tiller density and biomass were studied from excavated turfs. Five life‐cycle stages were determined: dormant buds, juvenile, mature, flowering and dead tillers. A stage‐based transition matrix model was developed to estimate the long‐term dynamics of the sedge populations and to compare life‐history strategies between ungrazed and grazed populations. Short‐term and retrospective models, based on the growth during the sampling year and during the lifetime of the clonal fragments, respectively, were compared to see how well the short‐term model can describe demography of long‐lived plants. According to the short‐term model, tiller populations were decreasing (λ < 1 except for C. membranacea), whereas the retrospective model indicated that the tiller populations were increasing. Tiller population growth rates did not differ between ungrazed and grazed habitats. Nevertheless, the similar growth rates may be obtained by balanced differences in the vital rates between plants of the two habitats. The plants in the ungrazed habitat tended to remain in their current life‐cycle stage, whereas plants in the grazed habitat moved quickly to the next stage and died earlier. C. aquatilis ssp. stans appears to gain a competitive advantage over the other species under intensive grazing, as indicated by the higher tiller density and greater below‐ground biomass in grazed vegetation. The greater amount of below‐ground biomass apparently buffers C. aquatilis ssp. stans against grazing better than the other species.  相似文献   

18.
Agricultural intensification over the past decades has led to a generalized decline in farmland biodiversity. Farmland birds are particularly exposed to rapid changes in habitat and reduced food resources or availability. Understanding how farmland specialists can be preserved and their populations enhanced are major challenges for this century. Based on a long‐term (19‐year) study of a Eurasian Stone‐curlew Burhinus oedicnemus population, we estimated the demographic parameters, including clutch size, egg volume, hatching success, survival rate and apparent population size. Demographic rates found for this French population were, on average, comparable to those found elsewhere in Europe. However, all demographic parameters showed negative trends, including a dramatic decline in the local population (26% decline over 14 years) and a 10% decline in adult survival rate over 11 years. Such a long‐term decline, despite on‐going conservation efforts, calls into question the overall sustainability of arable Stone‐curlew populations. We infer some of the possible causes of this decline, in particular food shortage, and discuss how this pattern could be reversed through conservation measures applicable at very large spatial scales.  相似文献   

19.
Peripheral populations have long been predicted to show lower vital rates, higher demographic fluctuations, and lower densities than central populations. However, recent research has questioned the existence of clear patterns across species’ ranges. To test these hypotheses, we monitored five central and six northern peripheral populations of the widespread herb Plantago coronopus along the European Atlantic coast during 5 yr. We estimated population density, and calculated mean values and temporal variability of four vital rates (survival, individual growth, fecundity and recruitment) in hundreds of plants in permanent plots. Central populations showed higher fecundity, whereas peripheral populations had higher recruitment per reproductive plant, indicating a higher overall reproductive success in the periphery. Central populations showed a marginally significant tendency for higher growth, and there were no differences between range positions in survival. Fecundity and growth were affected by intraspecific competition, and recruitment was affected by precipitation, highlighting the importance of local environmental conditions for population performance. Central and peripheral populations showed no significant differences in temporal variability of vital rates. Finally, density was significantly higher in peripheral than in central populations, in discrepancy with the abundant‐centre model. Density was correlated to seedling recruitment, which would counterbalance in peripheral populations the lower fecundity and the tendency for lower growth of established plants. Such compensations among vital rates might be particularly common in widespread plants, and advise against simplistic assumptions of population performance across ranges. The whole species’ life cycle should be considered, since different arrangements of vital rates are expected to maximize fitness in local environments. Our results show also the importance of discerning between geographical periphery and ecological marginality. In a context of climate‐induced range shifts, these considerations are crucial for the reliability of niche‐models and the management of plant peripheral populations.  相似文献   

20.
Reintroduction projects aim to reestablish a self‐sustaining population of an endangered species within its historical range. Adequate post‐release monitoring by gathering demographic data is important to evaluate the success of a reintroduction. Survival and reproduction rates of a reintroduced population can be compared with a self‐sustaining wild population to evaluate the success of a reintroduction. In early 2007, Nipponia nippon (Crested Ibis) was reintroduced into the Qinling Mountains (Shaanxi, Central China). In this study, we attempt to evaluate the demographic status of the reintroduced population. Age‐specific survival rates of 56 released adults and 77 wild‐born fledglings were estimated using mark‐recapture data obtained from 2007 to 2014. Survival rates for the yearlings (0.599, with 95% confidence interval [CI]: 0.467–0.719) were lower than the estimates from a wild population in Yangxian County, but the survival rates of the adults (0.678, with 95% CI: 0.603–0.745) were similar. The number of breeding pairs gradually increased since 2008, although breeding success (52.5%) was somewhat less than that of the wild population (67.6%). The stochastic estimation of population growth rate (1.084 with 95% CI: 1.069–1.098) and population size (5‐fold increase) estimated from an age‐classified Leslie matrix indicate that the reintroduced population of the Crested Ibis is more likely in regulation phase over the next 25 years. We conclude that the reintroduction of the Crested Ibis in Qinling Mountains has great promise, and progress toward a self‐sustaining population has been made under some interventions. Governments, local communities, and scientists need to facilitate habitat restoration for the long‐term survival of this endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号