首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Data from two surveys of the Tatra Mountain lakes (Slovakia and Poland) performed in the autumns of 1984 (53 lakes) and 1993 or 1994 (92 lakes) were used to estimate spatial variability in water chemistry in this lake district during the period of maximum European acid deposition. The ionic content of the lakes was generally low, with conductivity (at 20°C) ranging from 1.1 to 4.7 mS m?1 and 23% of the lakes had a depleted carbonate buffering system. Major factors governing differences in lake-water chemistry were bedrock composition and amount of soil and vegetation in their catchment areas. Compared to lakes in the predominantly granitic central part of the Tatra Mountains, lakes in the West Tatra Mountains had higher concentrations of base cations and alkalinity due to the presence of metamorphic rocks in the bedrock. Concentrations of phosphorus, organic carbon, organic nitrogen, and chlorophyll-a were highest in forest lakes and decreased with decreasing density of vegetation and soil cover in the catchment areas. Concentrations of nitrate showed an opposite trend. Several exceptions to these general patterns in chemical and biological composition were due to exceptional geology or hydrology of the lake catchments.  相似文献   

2.
Concentrations of major nutrients (C, N, P) and acid soluble metals (Ca, Mg, K, Al, Fe, Mn, Pb, and Zn) were determined in modern (0–1 cm) and pre-acidification (5–10 cm) sediment layers collected from 37 alpine and 3 forest lakes in the Tatra Mountains (Slovakia, Poland) in 1996–1998. Sediment composition reflected catchment characteristics and productivity of lakes. In the sediments of alpine lakes, C and N concentrations decreased and Mg increased with a decreasing proportion of vegetation and soil in the catchment. Decreasing Ca:Mg ratios in sediments along the vegetation gradient was inverse to that in water, and could be associated with different ratios of cations in water leachate from catchments and in solids which enter the lake due to soil erosion. Phosphorus concentrations increased with the proportion of moraine areas, with till soils rich in P. Concentrations of C, N, P, and Ca in sediments positively correlated to their concentrations in water. Sediment concentrations of Al and Al:Ca ratios increased with decreasing sediment and water pH. A negative correlation between water pH and concentrations of organic C in water and sediments indicated the important impact of organic acids on the acid status of the lakes exposed to higher terrestrial export of organic matter. Compared to the pre-acidification period, the modern sediments had significantly higher Fe, Mn, Zn, Pb, and K, but lower Mg concentrations. The Zn and Pb enrichment was more evident in oligotrophic alpine lakes than in more productive forest lakes and was independent of lake water or sediment pH. Fe and Mn concentrations in the modern sediments were higher than in ambient soils and bedrock, while those in pre-acidification sediments were similar to contemporary soils and to the rock layer. The enrichment of the modern sediments with Fe and Mn thus probably resulted from both their redox recycling and ecosystem acidification.  相似文献   

3.
Concentrations of total phosphorus (TP), inorganic and organic nitrogen, organic matter, and chlorophyll-a were studied in ten mountain lakes at various stages of acidification, trophy, and type of watershed during each July and October from 1987 to 1990. Concentrations of TP and total organic matter were higher in July than in October. Concentrations of NH44 +-N decreased and NO3 -N increased from July to October. The relative composition of total nitrogen (TN) and its concentration were strongly dependent on the type of watershed: the lowest TN concentrations were observed in lakes with forested watersheds, increasing above the timberline and reaching maximum values in acidified lakes with rocky watersheds. In the pool of TN, nitrate was most important in lakes above the timberline (70–86% of TN), and organic nitrogen in forest lakes (> 90% of TN). Lakes with rocky watersheds were characterized by high ratios of TN:TP (> 250 by mass). The concentration of chlorophyll-a varied widely, from 0.01 to 22.6 µg l–1, without any consistent change between July and October, and were P limited.  相似文献   

4.
The mid-summer phytoplankton communities of more than 100 Adirondack lakes ranging in pH from 4.0 to 7.2 were characterized in relation to 25 physical-chemical parameters. Phytoplankton species richness declined significantly with increasing acidity. Acidic lakes (pH < 5.0) averaged fewer than 20 species while more circumneutral waters (pH > 6.5) averaged more than 33 species. Phytoplankton abundance was not significantly correlated with any of the measured physical-chemical parameters, but standing crop parameters, i.e., chlorophyll a and phytoplankton biovolume, did correlate significantly with several parameters. Midsummer standing crop correlated best with total phosphorus concentration but acidity status affected the standing crop-phosphorus relationship. Circumneutral waters of low phosphorus content, i.e. < 10 µg·1–1 TP, averaged 3.62 µg·1–1 chlorophyll a whereas acidic lakes of the same phosphorus content averaged only 1.96 µg·1–1 chlorophyll a. The midsummer chlorophyll content of lakes of high phosphorus content, i.e. > 10 µg·1–1 TP, was not significantly affected by acidity status.Adirondack phytoplankton community composition changes with increasing acidity. The numbers of species in midsummer collections within all major taxonomic groups of algae are reduced with increasing acidity. The midsummer phytoplankton communities of acidic Adirondack lakes can generally be characterized into four broad types; 1) the depauperate clear water acid lake assemblage dominated by dinoflagellates, 2) the more diverse oligotrophic acid lake community dominated by cryptomonads, green algae, and chrysophytes, 3) the productive acid lake assemblage dominated by green algae, and 4) the chrysophyte dominated community. The major phytoplankton community types of acid lakes are associated with different levels of nutrients, aluminum concentrations, and humic influences.  相似文献   

5.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

6.
The physical and chemical variabilities as well as the distribution of diatoms of six boreal lakes in the Laurentian Mountains (southern Québec, Canada) were studied. The lakes are located along an altitudinal gradient and were sampled at a biweekly resolution from May through October, 2002. In general, we found later onset and weaker lake stratification under colder climates. Lake circulation and SiO2 are strongly correlated and together significantly explain the distribution of diatoms of the individual lakes. Diatoms that accumulated in the sediment traps were mostly composed of benthic species, suggesting resuspension. However, diatom flux and lake circulation were not significantly correlated, the diatom assemblages in the sediment traps were similar in two consecutive years, and species–environment relationships were comparable among lakes, which indicates that the effects of resuspension were minimal. In addition, we found that one lake was more productive due to forest logging. The forest in the catchment of Lake Maxi was entirely clear-cut shortly prior to our sampling. Mean total phosphorus, dissolved organic carbon, and chlorophyll a concentrations were significantly higher when compared to the other five study lakes. This study seeks to improve our understanding of how diatoms in boreal lakes respond to climate change and forest clear-cut.  相似文献   

7.
This study describes the physical and chemical properties of 17 Afroalpine lakes (>2 m deep) and 11 pools (<2 m deep) in the Rwenzori mountains, Uganda-DR Congo, with the aim to establish the baseline conditions against which to evaluate future environmental and biological changes in these unique tropical ecosystems, and to provide the foundation for lake-based paleoenvironmental studies. Most Rwenzori lakes are located above 3,500 m elevation, and dilute (5–52 μS/cm specific conductance at 25°C) open systems with surface in- and outflow. Multivariate ordination and pairwise correlations between environmental variables mainly differentiate between (1) lakes located near or above 4,000 m (3,890–4,487 m), with at least some direct input of glacial meltwater and surrounded by rocky catchments or alpine vegetation; and (2) lakes located mostly below 4,000 m (2,990–4,054 m), remote from glaciers and surrounded by Ericaceous vegetation and/or bogs. The former group are mildly acidic to neutral clear-water lakes (surface pH: 5.80–7.82; Secchi depth: 120–280 cm) with often above-average dissolved ion concentrations (18–52 μS/cm). These lakes are (ultra-) oligotrophic to mesotrophic (TP: 3.1–12.4 μg/l; Chl-a: 0.3–10.9 μg/l) and phosphorus-limited (mass TN/TP: 22.9–81.4). The latter group are mildly to strongly acidic (pH: 4.30–6.69) waters stained by dissolved organic carbon (DOC: 6.8–13.6 mg/l) and more modest transparency (Secchi-disk depth: 60–132 cm). Ratios of particulate carbon, particulate nitrogen and chlorophyll a in these lakes indicate that organic matter in suspension is primarily derived from the lakes’ catchments rather than aquatic primary productivity. Since key features in the Rwenzori lakes’ abiotic environment are strongly tied to temperature and catchment hydrology, these Afroalpine lake ecosystems can be expected to respond sensitively to climate change and glacier melting. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

8.
I addressed the question how lake and catchment morphometry influences water chemistry and water quality over a large scale of European lakes, and developed the regression equations between most closely related morphometric and water quality indices. I analysed the data of 1,337 lakes included in the European Environment Agency (EEA) database, carrying out separate analyses for three basic lake types: large lakes (area ≥100 km2, 138 lakes), shallow lakes (mean depth ≤3 m, 153 lakes) and large and shallow lakes (area ≥100 km2 and mean depth ≤8 m, 35 lakes). The study revealed that in Europe, the lakes towards North are larger but shallower and have smaller catchment areas than the southern lakes; lakes at higher altitudes are deeper and smaller and have smaller catchment areas than the lowland lakes. Larger lakes have generally larger catchment areas and bigger volumes, and they are deeper than smaller lakes, but the relative depth decreases with increasing surface area. The lakes at higher latitudes have lower alkalinity, pH and conductivity, and also lower concentrations of nitrogen and phosphorus while the concentration of organic matter is higher. In the lakes at higher altitudes, the concentration of organic matter and nutrient contents are lower and water is more transparent than in lowland lakes. In larger lakes with larger catchment area, the alkalinity, pH, conductivity and the concentrations of nutrients and organic matter are generally higher than in smaller lakes with smaller catchments. If the lake is deep and/or its residence time is long, the water is more transparent and the concentrations of chlorophyll a, organic matter and nutrients are lower than in shallower lakes with shorter residence times. The larger the catchment area is with respect to lake depth, area and volume, the lower is the water transparency and the higher are the concentrations of the nutrients, organic matter and chlorophyll as well as pH, alkalinity and conductivity. The links between lake water quality and morphometry become stronger towards large and shallow lakes. Along the decreasing gradients of latitude, altitude and relative depth, the present phosphorus concentration and its deviation from the reference concentration increases.  相似文献   

9.
Eleven lakes in the South Island of New Zealand were sampled in summer 1996. Water column profiles of ultraviolet radiation (UVR) at four wavelengths and photosynthetically available radiation (PAR) were obtained, along with analyses of dissolved organic carbon (DOC) concentration, total suspended solids (TSS), and catchment vegetation, including forest and natural grassland. Downward attenuation coefficients (K d) and lake water transparency (1/K d) for UVR were examined in relation to these variables. Consistent with other regions of the world, DOC concentration and variables related to DOC were the best predictors of UVR penetration. With our data set, we calculated ratios of water column integrals (RI) of UVR/PAR irradiance, using equations from the literature. At DOC concentrations below 4 g m−3, a progressive increase in RI shows that lakes become increasingly transparent to UVR. We also normalized chromophoric dissolved organic matter (CDOM) absorption of UVR at 380 nm (a 380) to DOC concentration and found that the UVR-absorbing capacity per unit DOC increases with increasing percentage of forest in the catchment area. This indicates that not only DOC concentration but also DOC type or composition is important in determining the transparency of lake water to UVR, and that qualitative differences in DOC are dictated by the type and amount of vegetation present in the lake's catchment area. Received: September 18, 2000 / Accepted: December 14, 2000  相似文献   

10.
1. For north temperate lakes, the well‐studied empirical relationship between phosphorus (as measured by total phosphorus, TP), the most commonly limiting nutrient and algal biomass (as measured by chlorophyll a, CHL) has been found to vary across a wide range of landscape settings. Variation in the parameters of these TP–CHL regressions has been attributed to such lake variables as nitrogen/phosphorus ratios, organic carbon and alkalinity, all of which are strongly related to catchment characteristics (e.g. natural land cover and human land use). Although this suggests that landscape setting can help to explain much of the variation in ecoregional TP–CHL regression parameters, few studies have attempted to quantify relationships at an ecoregional spatial scale. 2. We tested the hypothesis that lake algal biomass and its predicted response to changes in phosphorus are related to both local‐scale features (e.g. lake and catchment) and ecoregional‐scale features, all of which affect the availability and transport of covarying solutes such as nitrogen, organic carbon and alkalinity. Specifically, we expected that land use and cover, acting at both local and ecoregional scales, would partially explain the spatial pattern in parameters of the TP–CHL regression. 3. We used a multilevel modelling framework and data from 2105 inland lakes spanning 35 ecoregions in six US states to test our hypothesis and identify specific local and ecoregional features that explain spatial heterogeneity in TP–CHL relationships. We include variables such as lake depth, natural land cover (for instance, wetland cover in the catchment of lakes and in the ecoregions) and human land use (for instance, agricultural land use in the catchment of lakes and in the ecoregions). 4. There was substantial heterogeneity in TP–CHL relationships across the 35 ecoregions. At the local scale, CHL was negatively and positively related to lake mean depth and percentage of wooded wetlands in the catchment, respectively. At the ecoregional scale, the slope parameter was positively related to the percentage of pasture in an ecoregion, indicating that CHL tends to respond more rapidly to changes in TP where there are high levels of agricultural pasture than where there is little. The intercept (i.e. the ecoregion‐average CHL) was negatively related to the percentage of wooded wetlands in the ecoregion. 5. By explicitly accounting for the hierarchical nature of lake–landscape interactions, we quantified the effects of landscape characteristics on the response of CHL to TP at two spatial scales. We provide new insight into ecoregional drivers of the rate at which algal biomass responds to changes in nutrient concentrations. Our results also indicate that the direction and magnitude of the effects of certain land use and cover characteristics on lake nutrient dynamics may be scale dependent and thus likely to represent different underlying mechanisms regulating lake productivity.  相似文献   

11.
Concentrations of total phosphorus (TP) and chlorophyll a (CHLA) were measured in 28 lakes in the High Tatra Mountains (Slovakia) from 1983 to 1990. The relationship between log CHLA and log TP in the Tatra lakes is similar to relationships developed for lakes in other regions, but variation is higher. A part of this variation is caused by acidification of the lakes. In the lakes with pH between 4.9 and 6.3 the CHLA concentrations are often extremely low while TP concentrations decreased, but not as drastically.  相似文献   

12.
Hall  Roland I.  Smol  John P. 《Hydrobiologia》1993,269(1):371-390
We investigated the ecological effects of terrestrial ecosystem change during the hemlock decline and recovery (4,800–3,500 BP) on lake communities (diatoms and chrysophytes). This study specifically assessed the role of catchment area and slope in determining the magnitude of lake eutrophication during the hemlock decline by analyzing sediment cores from five alkaline, holomictic lakes in southeastern Ontario, Canada. The study lakes were similar in most limnological aspects, but differed widely in the relative sizes of their catchments. Diatoms were used to quantitatively infer past lake-water total phosphorus (TP) concentrations.All five lakes showed shifts in their algal communities during the hemlock decline, but most lakes exhibited only minor changes in trophic status. The magnitude of the limnological response appears to be related to catchment size and slope. Long Lake, Burridge Lake, and Gunter Lake possess the smallest catchments and exhibited the weakest responses to the hemlock decline. The catchment area of Flower Round Lake is considerably larger and steeper than these lakes, and was the only lake to show a marked eutrophication. Aulacoseira ambigua bloomed and diatom-inferred TP concentration increased by 14 µg 1–1.Catchment slope appears to have influenced the type of material exported into the lakes. Lake basins draining catchments with gentle relief received proportionally greater amounts of organic matter, whereas steeper catchments supplied relatively greater proportions of mineral matter. Faster water flow associated with steeper catchment slope may have enhanced mineral erosionFollowing the hemlock decline, nutrient supplies to most of the study lakes were reduced. The period of forest recovery was associated with an 11 µg 1–1 reduction in diatom-inferred lake-water TP concentration in Flower Round Lake, and algal populations decreased. Our results generally support the ecological theory of forest ecosystem development and secondary succession developed from long-term data collected at the Hubbard Brook Experimental Ecosystem.  相似文献   

13.
The chemical composition of watershed waters supplying 13 mesotrophic lakes (in N.E. Poland) including as the deepest lake L. Hańcza, z = 108.5 m (summer total phosphorus [TP] content ≤0.050 mg · 1−1, chlorophyll a ≤5μg · 1−1, SD≥2.5 m) in a typical postglacial lake district (Suwalski Landscape Park) as well as surface and bottom waters of the lakes were studied in summer. Although the underestimated (i.e. including only surface runoff, river inflows and precipitation) yearly TP loading is equal to or higher than the permissible value, the lakes have maintained their mesotrophic features for 20 to 30 years. P sorption to the allochthonous inorganic material as well as decalcification processes in the lakes are probably responsible for this situation, as there is a strong difference between the chemical content of supplying waters and lake waters and as there is a considerable enrichment of P on sestonic particles. As a consequence of the low bio-availability of P, the midsummer amount of chlorophyll a is lower than predicted from the “TP—chlorophyll-a” relation found for harmoniously eutrophicating (i.e. P-limited) lakes.  相似文献   

14.
1. Surface sediment biofilm samples from 82 Pyrenean lakes were analysed for marker pigment composition using high performance liquid chromatography (HPLC). 2. Variability in the pigment composition among lakes was investigated by multivariate statistical analyses using a large data set of factors describing lake chemical, physical, morphological and catchment characteristics. 3. Due to the widely varying light penetration in the lakes, the most significant gradient of pigment composition extended from a benthic to a planktonic signal. The most important pigments in the gradient were alloxanthin (cryptophytes marker pigment, planktonic signal) and diatoxanthin (diatoms marker pigment, benthic signal). The molar ratio between these two marker pigments was positively correlated with lake depth. 4. Chlorophyll‐a preservation was found to be positively related to light penetration and the development of an autothrophic biofilm on the surface sediment and negatively related to decreasing pH and the percentage of alpine meadows in the lake catchments. 5. Zooplankton marker pigments in the surface sediment, including grazing by‐products (e.g. phaeophorbides) and carotenoids (astaxanthin, canthaxanthin, echinenone) incorporated into their tissues, were correlated with the areal abundance of zooplankton. 6. Marker pigments for photosynthetic bacteria, BChl‐e and okenone, were found mainly in relatively shallow lakes with large catchments that are forested, probably because of their higher loading of allochthonous organic matter. 7. The evaluation of a preservation index (Chl‐a expressed as a percentage of a‐phorbins) and the alloxanthin/diatoxanthin ratios throughout the sediment record of mountain lakes can provide evidence of historical changes in the relative importance of planktonic versus benthic primary production and might ultimately be interpreted in terms of climatic or environmental changes.  相似文献   

15.
This study provides the most comprehensive physico-chemical and phytoplankton data yet available for Australian dune lakes, which are among the world's most naturally acidic and oligotrophic freshwaters. Seasonal and spatial variations were examined in Blue Lagoon and Lake Freshwater, two ‘water-table window’ lakes in south-east Queensland. Like other dune lakes, they are acidic (minimum pH 4.20 and 4.55, respectively), polymictic water bodies with low concentrations of marine-derived major ions and almost undetectable levels of trace metals. While linmologically similar in winter, during spring-summer Lake Freshwater has significantly higher levels of chlorophyll-a, total phosphorus (TP) and turbidity than Blue Lagoon and other dune lakes, indicating seasonal mesotrophy. The key nutrient is TP, which has recently increased to a maximum of 17 μ· l−1, due either to inputs from recreational sources, or to the death and decomposition of littoral vegetation resulting from falling water levels over the last decade. Inorganic nitrogen, though present only in small amounts, does not appear to limit the eutrophication process because of a shift in phytoplankton dominance from the usual desmids and dinoflagellates to N2-fixing blue-green algae. A chlorophyll - TP linear regression derived for dune lakes indicates that at TP < 20 μg · l−1 chlorophyll ‘yield’ is higher than in other lake types represented by regressions from the literature. This may be due to a more efficient utilization of the limited available phosphorus by dune lake algae which have adapted to the naturally oligotrophic environment. The implications of these findings for lake management are discussed.  相似文献   

16.
Deepwater sediments and trophic conditions in Florida lakes   总被引:3,自引:2,他引:1  
Flannery  M. S.  Snodgrass  R. D.  Whitmore  T. J. 《Hydrobiologia》1982,91(1):597-602
Sediment cores were taken from near maximum depth in 15 Florida lakes representing a wide range of trophic conditions. Chemical analyses of surface sediments showed Al, Fe, and Ca to be the most abundant elements in all samples, and the ratio of Al to Ca to be smaller for eutrophic lakes. Sediment organic matter increased with trophic state, as did the degree to which it was enriched in nitrogen. Corresponding sediment C/N ratios decreased with increasing lake trophic state and showed significant negative correlation with chlorophylla, total N, and total P in the water column. Concentrations of sedimentary chlorophyll derivatives showed some relation to trophic state but differences in basin morphometry hinder its use as an inter-lake index of chlorophyll production.  相似文献   

17.
The aim of the study was to evaluate the effects of coniferous forest cover in the catchment basin and relative catchment area (catchment area to lake volume ratio) on phytoplankton composition in humic lakes. The study was carried out in 11 small and shallow lakes situated in the West Polesie region (Eastern Poland). The lakes were divided with respect to forest cover in their catchment basins into two groups: high forest cover — HFC (more than 60%) and low forest cover — LFC (less than 60%). The study showed that both, land use in the catchments (proportion of forests) and the relative catchment area determined physicochemical and biological parameters in the lakes. The high relative catchment area affects their high productivity expressed by high chlorophyll a concentration and low water visibility. The lakes of the LFC group had low water colour as well as high concentration of total phosphorus (Ptot), reaction (pH), and conductivity of water and a large number of cyanophytes and chlorophytes. The dominant species, e.g., Planktolyngbya limnetica, Limnothrix planctonica, Planktothrix agardhii, Coenococcus planctonicus, were characteristic of high trophic status. In the lakes of the HFC group, Ptot, pH, conductivity of water and the contribution of cyanophytes and chlorophytes was considerably lower, whereas the water colour and the number of raphidophytes represented by Gonyostomum semen was high. The large number of raphidophytes and the small amount of chlorophytes and cyanophytes in the lakes of the HFC group indicated the lake naturalness.  相似文献   

18.
To determine the frequency with which zooplankton influence chlorophyll a (Chla) levels, we explored annually-averaged data from oligotrophic and mesotrophic lakes that differed in morphometry, total phosphorus (TP) concentrations, and zooplankton community composition due to pH. The data were divided into two sets according to the type of filter used to collect chlorophyll. Residuals of the Chla: TP regressions were not related to lake morphometry, TN content, water clarity or pH. In the first data set there were no consistent relationships between residuals in Chla and twelve grazer biomass variables for 37 of the 38 lakes. The single exception had a very large population of Daphnia dubiaand low concentrations of Chla for its TP. In the second data set, 3 of 25 lakes had exceptionally low Chla concentrations for their TP. These lakes were acidic (pH < 6) and had very large biomasses of Holopedium gibberumcorrelated with negative Chla residuals, indicating significant grazing. At pH > 6, Daphnia spp. strongly influenced the significant correlations. We conclude that zooplankton contribute to the prediction of Chla beyond that possible by TP alone in acidic and non-acidic Canadian Shield Lakes, but evidence for strong suppression of chlorophyll by grazers was relatively rare (4 of 63 cases) on annual time steps.  相似文献   

19.
Recent anthropogenic climate change and the exponential increase over the past few decades of Saharan dust deposition, containing ecologically important inputs of phosphorus (P) and calcium (Ca), are potentially affecting remote aquatic ecosystems. In this study, we examine changes in cladoceran assemblage composition and chlorophyll‐a concentrations over the past ~150 years from high‐resolution, well‐dated sediment cores retrieved from six remote high mountain lakes in the Sierra Nevada Mountains of Southern Spain, a region affected by Saharan dust deposition. In each lake, marked shifts in cladoceran assemblages and chlorophyll‐a concentrations in recent decades indicate a regional‐scale response to climate and Saharan dust deposition. Chlorophyll‐a concentrations have increased since the 1970s, consistent with a response to rising air temperatures and the intensification of atmospheric deposition of Saharan P. Similar shifts in cladoceran taxa across lakes began over a century ago, but have intensified over the past ~50 years, concurrent with trends in regional air temperature, precipitation, and increased Saharan dust deposition. An abrupt increase in the relative abundance of the benthic cladoceran Alona quadrangularis at the expense of Chydorus sphaericus, and a significant increase in Daphnia pulex gr. was a common trend in these softwater lakes. Differences in the magnitude and timing of these changes are likely due to catchment and lake‐specific differences. In contrast with other alpine lakes that are often affected by acid deposition, atmospheric Ca deposition appears to be a significant explanatory factor, among others, for the changes in the lake biota of Sierra Nevada that has not been previously considered. The effects observed in Sierra Nevada are likely occurring in other Mediterranean lake districts, especially in softwater, oligotrophic lakes. The predicted increases in global temperature and Saharan dust deposition in the future will further impact the ecological condition of these ecosystems.  相似文献   

20.
The aims of this study were to document the mainly chemical behaviour of two linked artificial lakes used for both stormwater management and recreation in the new town of Craigavon. Further, the understanding of their behaviour should help in their management and the design of other similar lakes.The lake mean total phosphorus (73 µg P l–1), nitrate (0.50 mg N l–1) and chlorophyll a (25 µg l–1) concentrations, Secchi depth (1.2 m) and the estimated total phosphorus loading (1.98 g m–2 a–1) all classify the main lake as eutrophic. An important source of the phosphorus load on the lakes is the urban area of Craigavon (52% of the total load). The interrelationships between total phosphorus, chlorophyll a and Secchi depth in the main lake are similar to those in natural ones. In addition, the lake follows the total phosphorus load — trophic state relationships (lake total phosphorus and chlorophyll a concentrations and Secchi depth) found to apply elsewhere. These two points indicate that the artificial lakes in Craigavon behave similarly to natural ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号